

A circular economy approach for
life cycles of products and services

Development Report and Documentation for
Traceability Components and Tools

PROJECT INFORMATION

Type of Project European Commission Horizon 2020

Topic
CIRC-01-2016-2017 Systemic, eco-innovative approaches for the circular
economy: large-scale demonstration projects

Grant Agreement No. 776503

Project Duration 01/05/2018 – 30/04/2021 (36 months)

Project Coordinator Nottingham Trent University (NTU)

Project Partners

Enviro Data (ENV), Jonathan Michael Smith (JS), Kosnic Lighting Limited (KOS),
Centre of Research for Energy Resources and Consumption (CIR), European
EPC Competence Center GmbH (EECC), The Institute for Ecology of Industrial
Areas (IETU), SWEREA IVF AB (SWE), Make Mothers Matter (MMM), ONA
PRODUCT (ONA), INDUMETAL Recycling (IND), GS1 Germany GMBH (GS1G),
Laurea University of Applied Science (LAU), Center for European Policy Studies
(CEPS), Institute of Communication and Computer Systems (ICCS), Recyclia
(REC), S.A.T. Alia (ALIA)

DOCUMENT INFORMATION

Deliverable 5.2

Title
Development report and documentation for traceability components and
toolsTest

Version

Release Date
(dd/mm/yy)

Work Package WP5

Dissemination Level PU

DOCUMENT AUTHORS AND AUTHORISATION

Document Responsible Dr. Sebastian Schmittner, EECC

Contributors Dr. Sebastian Schmittner, EECC; Dr. Georg Schwering, EECC

Reviewed by Dr. Bahar Cat-Krause, GS1G; Dr. Fernando Círez Oto, CIR

Approved by Prof. Daizhong Su, NTU

DOCUMENT HISTORY

Version Date (dd/mm/yy) Description Implemented by

0.1 29/05/19 First draft EECC

0.2 12/07/19 Draft for Review EECC

0.3 23/07/19 Reviewers minor corrections included EECC

0.4 25/07/19
Including appendix, summary and taking all
suggestions by reviewers into account

EECC

1.0 26/07/19 Final Draft for Approval EECC

1

1.0

2019-07-30

Summary

In this document, the EECC, as the leader of work package (WP) 5 within CIRC4Life, reports on the
development of traceability tools and core components, collectively referred to as the Traceability Module,
which is the primary objective of this work package. A “tool” here concretely refers to a RESTful web services
(RWS) by which dynamic data about assets (mostly trade items) is captured or shared. Data is called
“dynamic” if it is specific to a single instance of the asset, or at least to a lot or batch. Furthermore, dynamic
data is not known a priori for the whole product class (such as e.g. the weight of the product) but results from
events happening to the concrete assets, such as e.g. transportation of an item. The role of the Traceability
Module within the ICT architecture of CIRC4Life is to capture such dynamic data from partners along the value
chain, store it, and make it accessible to the other components of the ICT platform.

A major goal of CIRC4Life is to develop an online assessment of the ecological and/or social impact of an
individual product. This means that, for example, a customer is enabled to get an ecological score of a product
in a shop on demand through an online application and on an item specific level. This enables the customer to
compare e.g. tablets of the same kind in terms of their possibly different impacts. This way, new business
models are enabled, since it becomes possible to e.g. demand higher prices for items which were
manufactured and handled according to higher ecological and social standards and for which accurate
dynamic data is available to prove this. Once dynamic data is tracked in the way envisioned in CIRC4Life, also
manufacturers, merchants, carriers, and recyclers along the value chain can be provided with a detailed view
on the impacts they are causing, which add up to the score of the items being handled. Beyond raising
awareness, this information can be taken into account also for the price in B2B trade, This way, an economic
incentive is created to reduce ecological and social impacts. At the same time, the tools developed here
enable the involved companies to identify which processes have the biggest potential for impact reduction.

The Traceability Module plays the role of the source of dynamic data to the rest of the ICT in CIRC4Life. By
developing the tools to capturem store, and share the dynamic data among all involved partners, WP 5 lays
the foundation for the online computation of dynamic scores. This first step can be broken down further and
multiple tools and components have been developed to fulfil the task. In a first step, the companies along the
value chain of a product need to record the relevant data, such as energy or more general resource
consumption, waste production, etc. This data needs to be collected and transformed in order to make it
accessible and usable. To this end, EECC has developed capturing applications, which are adapted to the
digitalization level of the respective partners. Where data is not yet digitized, the EECC provides web user
interfaces to enter the data manually. Where data is already available in digital form, file uploads or APIs
(RWS) to directly connect to the partners ICT systems are developed.

EECC has developed an extension to the EPCIS 1.2 standard for capturing impacts along with standard
business event data in the traceability core component. Building upon the EPCIS standard ​[3] ensures that the
data format and the standard EPCIS tools (SOAP endpoints) can be used beyond this project without further
documentation. The development of all core components of the Traceability Module is finished and a test
installation has been deployed. EECC has further developed a data access model and protocol. The result is
contained in this document. In CIRC4Life, the ICT system is centralised, but in a more distributed setup, the
access model enables all partners to retain full control over their data and access rights while at the same
time enabling the sharing of the relevant information about ecological and social impacts.

Specific tools to capture and share the data for the recycling and reuse business model and the respective
demonstrations have been developed, implemented, and a test installation is deployed. EECC has also
developed tools for the other business models, but since these are still in a more conceptual phase and
specifications of concrete demonstrations have been developed only partially, those tools are not fully
implemented and deployed. The discussion between EECC and all business models and demonstrations is
ongoing. EECC has postponed planned resources to finish the implementation and deploy the tools as soon as

2

the planning in the remaining business models and demonstrations is advanced enough to derive their
requirements more concretely.

All traceability tools are documented using open API specifications ​[6] (OAS, formerly known as Swagger
specifications). This means that the documentation is built into the tools and available in machine readable as
well as human readable form directly from the software. The latest version at the time of writing can also be
found in ​Appendix 2​.

3

Table of Content
Summary 2

Table of Content 4

List of Tables 6

List of Figures 6

Acronyms and abbreviations 7

Introduction and Goals 8

Dynamic Eco Scores 9

Ecological Transparency and Data Ownership Along the Supply Chain 10

Traceability all along the value cycle 10

User Stories 11

Meat Production 11

Vegetables Production 11

Electronics Recycling and Reuse 12

Food Waste Recycling 14

Solution Strategy 14

System Scope and Context 15

Dynamic Data Sources 16

Data Protection and Privacy 18

Building Block View 19

Design and Development of the Core Components of the Traceability Module 20

Design and Development of Web Services 21

Capturing Services 22

Simplified Impact Capturing 22

Usage and Production Capturing APIs 23

Farming UI 23

Recycling and Reuse Capturing Application 24

Recycling Evaluation Capturing Web Interface 25

Accessing Services 26

Dynamic Eco Data 26

Item Status 26

Bin Filling Overview 26

4

Design and Development of Core Features of the Traceability Module 27

Data Access Model 28

Named Information AKA Hash URIs 28

Security Gained by Using Named Information 29

Thread Model 29

Solution 30

Double Envelope 30

Comparison to the State of the Art 31

Examples 32

Receiving an item 32

Hiding More Complex Information 33

The EPCIS Extension for Ecological Impacts 33

XML Schema Definition (XSD) 33

Examples for Events in the Demonstration of the Recycling/Reuse CEBM 39

Bin Disposal 39

Bin Collection 40

Inspection Event 41

Repairing Event 42

Disassembly Event 43

Acknowledgment 44

References 44

Appendix 45

5

List of Tables

Table 1: Abbreviations

List of Figures

Figure 1: Material and product flow in a universal value chain.

Figure 2: Sequence diagram for disposal of electronic devices at a smart bin.

Figure 3 Sequence diagram for information query of electronic devices disposed at a smart bin.

Figure 4 Sequence diagram for Inspection of electronic devices disposed at a smart bin at IND’s facilities.

Figure 5 High level data flow diagram of the Traceability Module.

Figure 6 General value circle for CIRC4Life demos

Figure 7 Simplified data flow form the electronics recycling and reuse demo to the Traceability Module.

Figure 8 Data flow diagram through the Traceability Module.

Figure 10 Components of the EPCIS core system of the Traceability Module

Figure 11 Generic Impact Capturing Web UI

Figure 12 Farming Web User Interface Wireframe

Figure 13 GUI for Inspection of disposed EEE items at IND

Figure 14 Map like UI for collection tour planning

6

Acronyms and abbreviations

Abbreviation Description

AKA Also Known As

API Application Programming Interface

B2B Business to Business

CEBM Circular Economy Business Model

D X.Y Deliverable X.Y, referring to a public deliverable within CIRC4Life.

EPC Electronic Product Code - see ​[5]

EPCIS Electronic Product Code Information Services - see ​[3]

GDPR General Data Protection Regulation

(S)GLN (Serialised) Global Location Number

(S)GTIN (Serialised) Global Trade Item Number

JSON JavaScript Object Notation

KPI Key Performance Indicator

NI Named Information

OAS OpenAPI Specification (originally known as the Swagger Specification)

PU Public, fully open, e.g. web

REST Representational State Transfer

RWS RESTful Web Service

SaaS Software as a Service

T X.Y Task X.Y within CIRC4Life

WP X Work Package X within CIRC4Life

Table 1: Abbreviations

7

Introduction and Goals

Traceability traditionally refers to capturing data about what happens to the important assets. By this means,
it is possible to keep track of the full history and in particular the latest location, disposition, etc. of e.g.
consumer goods along the supply chain up to the point of sales. Within CIRC4Life, the overarching goals are
twofold. On the one hand, the EECC has developed means to keep track of additional information needed for
a life cycle assessment or other ecological scores such as the CO​2 footprint in a standardized form. Using
standards makes it possible to share the recorded data between different companies, which is crucial in order
to get a reasonably complete picture of the ecological impacts along the whole supply chain. On the other
hand, it is to be demonstrated in CIRC4Life how to trace a product beyond the point of sales by recording data
also from the usage phase and even from the end of life/reuse/recycling phase. In consequence the loop is
closed by demonstrating how materials flows can be traced and hence ecological impacts assessed
throughout the full value cycle.

Figure 1: Material and product flow in a universal value chain.

Based on the grant proposal, discussions with the partners within CIRC4Life, and the System specification and
requirements analysis (D5.1), overarching goals were combined with the following goals of CIRC4Life to lay
the basis for the development of the Traceability Module (T 5.2).

8

Dynamic Eco Scores

A major innovation developed within CIRC4Life is the dynamic computation of Life Cycle Assessments (LCA)
for individual products and the derived eco points (eco credit/debit) scores. Dynamic here means that life
cycle assessment, or more generally ecological scoring methods, are improved such that a close to real time
computation of a rating of the ecological impact is possible. Furthermore, such impacts can now be computed
for individual products such that also very individual products as produced e.g. in the industry 4.0 can be
rated. Apart from the obvious benefit of an automated computation being timely available, the qualitative
improvement of a score being specific to the individual item should not be underestimated. Primary data,
collected by tracing an individual item, can remove the statistical uncertainty from the scoring that is usually
introduced by resorting to average values. Even if the relevant figures are collected with questionnaires from
the companies involved, as is the usual procedure in LCA assessments, these are still estimated averages. For
example, a company probably knows the average annual power consumption of a factory, but measuring this
figure with automated sensors and processing the data digitally makes it possible to use daily measurements
and hence get a much more accurate estimate of the energy used per produced item. In reality, data gaps
remain. Not all companies have the sensors or tools needed or are willing to introduce processes to measure
the data relevant for the assessment on a fine grained time scale. In this case, data gaps still need to be filled
with average data. But highlighting the data quality and uncertainties in an ecological scoring gives a much
more reliable final result. Furthermore, data quality of ecological data can be made a new quality criterion.
Just making the average data quality used in the scoring transparent and highlighting the importance of
reliable data poses an incentive for the companies involved to gather more reliable data. This process by itself
will lead to improved awareness and a focus on ecological impacts while at the same time providing an
empiric basis for improving a company's ecological performance.

The dynamic ecological scores boost all CEBMs developed within CIRC4Life. In particular, they enable
providing incentives for collaborative recycling and reuse by making the ecological impact of these actions
transparent and accessible. Certificates for particularly eco friendly designed products or even just the
transparency of making eco scores of products public provides an incentive for the creation of particularly eco
friendly products and services on the business side and for sustainable consumption on the consumer side.
Additionally, the manufacturing industry is sensitized to ecological impacts of their processes by collecting the
data in the first place. Demanding high data quality pushes the need to collect ecologically relevant data up
the supply chain.

To achieve these goals, developing the dynamic scoring methods for the computation is important. Before
making the scores computable and demonstrating the whole concept, traceability tools are needed in order to
capture the data as a basis for input. In particular, the ecological impacts related to each individual item along
its supply chain and further on through its whole life cycle need to be traced.

Consequently, the main goal of the Traceability Platform developed in WP5 is to support this major goal of
CIRC4Life, i.e. to enable the dynamic computation of eco scores by tracing product specific data of the
ecological impacts down to individual items. To make this goal more tangible, EECC has developed user stories
(see in particular Section “​Meat Production​”) together with the partners involved in the demonstrations.

Capturing, Storing, and providing access to such data about individual items on a very fine grained level is the
original purpose of traceability tools in general. Within CIRC4Life, the role of EECC is to provide a fully EPCIS
1.2 standard ​[3] compliant Traceability Module that fulfils this role. By using standards, it is ensured that the
developed system is interoperable, usable, and fit for integration beyond CIRC4Life. However, the EPCIS is
extensible which is used in order to introduce means for also tracing ecological impacts. The details of this
extension are described in Section ​The EPCIS Extension for Ecological Impacts​.

9

Ecological Transparency and Data Ownership Along the Supply Chain

Goods are traced along the supply chain, but, as of today, information flow from one partner to the other is
usually minimal. In a supply chain with many partners, it is rare that the second next company in the chain will
get any information above the legal and functional minimum required level. In order to enable the ​Dynamic
Eco Scores​, it is essential that data for the ecological impacts for a specific product are shared along the whole
supply chain.

In CIRC4Life, there is a central Traceability Module and a central ICT platform, hence partners inherently give
the control over their data out of hands by sharing it with the platform. In order to carefully control the data
access and guarantee a reasonable level of data protection, the ICT platform implements an access layer that
provides single sign on and platform wide roles for users and applications. The Traceability Module contains a
client to utilise and obey the identification, authentication and authorisation provided by the ICT platform.
This is very suitable for means of all demonstrations implemented in CIRC4Life.

Nevertheless, demanding that companies along the supply chain share their data in this way poses a barrier
for adoption of the software developed in CIR4Life beyond the project itself. Mitigating this foreseeable risk is
identified as an important goal of EECC’s efforts. EECC has therefore developed a concept for a data access
model which enables all companies to maintain full control of their data and at the same time enables
partially sharing the relevant (in this case ecological) data in a very fine grained way. Utilising these ideas,
confidential information (such as production volumes) can be kept private, whilst it is still possible to assess
the total ecological impact of a product. Since this concept involves a distributed system, the full
implementation is beyond the scope of CIRC4Life. Nevertheless, EECC has designed a future proof data model
in such a way as to enable implementation the full system. The details are given in Section ​Data Access Model​.

Traceability all along the value cycle

Traceability systems that are in operation today typically trace a products life cycle only up to the point of
sale. Within CIRC4Life, it is to be demonstrated how to trace an item along its whole value cycle, from
production and usage to its end of life. EECC has developed the data models and capture interfaces needed to
collect data from the meat and vegetables as well as the electronics supply chains. Ecological impacts, such as
the total energy consumption and maintenance related data of lamps during the usage phase will be captured
along with the usual traceability data in order to support the leasing model of KOS which demonstrates a
sustainable consumption business model.

The Traceability Module also facilitates the data exchange between the intelligent bins tested within CIRC4Life
and the rest of the ICT Platform. Subsequent inspection, possible remanufacturing, and reuse or recycling of
items is traced as well. This means that what happens to consumer electronics is traced even beyond the end
of life. In order to demonstrate that the system is generically usable, it is also to be used in order to trace
what happens to the bio waste after collection, which is part of Task 6.5 (demonstration of CEBMs for the
meat supply chain). In both demonstrations, secondary raw materials are produced from the recycling. The
compost or secondary metals and plastics then re-enter in the production stage hence closing the cycle.
Overall, utilising traceability along the whole value cycle of circular economy will be demonstrated and
circular economy business models can benefit from the sharing of item specific data about ecological impacts.

10

User Stories

Meat Production

Traceability systems based on EPCIS for meat and meat products are already established in many businesses.
The most common use case is to fulfil the regulatory requirements of providing information about the origin
of the meat. In today's traceability systems, however, information on the sustainability of the production is
usually not captured, much less is it carried along with the product. This means that the basic data for the
computation of ​Dynamic Eco Scores​ is missing.

In the demonstration, the end user comes to a shop and is provided with additional information about the
meat products on offer. A label featuring an easy to understand visualisation of the eco debit of the product is
attached to each item. Additionally, there is a digital link in the form of e.g. a QR code, which can be scanned
with the CIRC4Life eco shopping application, developed by NTU. After scanning the label that includes a serial
number, the individual eco debit of exactly this single item is shown along with the possibility to obtain more
detailed data of the product. This allows the end user to conveniently access the available static information
of the product (manufacturer, weight, etc.), the lot based information, such as the best before date, as well as
item specific information. The eco debit computation will be as specific as possible.

Another user story is developed by ALIA as a part of their business model demonstration. The key objective
here is to improve the ecological performance of the meat supply chain. For the responsible manager it is
important to get a process and maybe time specific view on the eco impacts in order to identify the processes
that have the biggest impact and hence also the biggest potential for improvement.

The Traceability Module offers all means to collect and provide the data along the meat supply chain. EECC
has developed the corresponding EPCIS event data models which can in principal track and trace all ecological
impacts on the most fine grained level.

In reality, it is usually difficult to trace a piece of meat back to an individual animal. The intermediate
“product” of the rearing , which is slaughtered for meat production, might be individually tracked through
(RFID enabled) ear tags. However, the batch size at the slaughterhouse usually prevents tracing a meat
product back to an individual farm. In this case, sustainability information can only be provided on a batch/lot
level and not on the level of the individual item. This is, however, much more accurate than the current state
of the art which only takes information on product class level into account for LCA. By capturing life data from
ALIA’s systems throughout the supply chain, the Traceability Module will be able to provide the data to enable
close to real time feedback on changes in the eco debit of the currently produced products upon modification
of the processes involved. Hence ALIA is enabled to dynamically adapt and improve their production in order
to become even more eco-friendly.

Vegetables Production

CIRC4Life consortium member Jonathan Smith (JS) already collects data to identify ecological impacts of the
vegetable production of his small organic farm business. In particular, he has focussed on carbon dioxide
emissions and collected data on a yearly basis so far. With the traceability tools, he can collect data more
timely and more specifically and hence he is enabled to break the ecological impact of his farm down to the
individual products. The case of comparing e.g. one euro worth of salad with one euro worth of potatoes in
terms of their CO​2 footprint was identified to be a relevant KPI. Given the digitalisation level of his business,
EECC has decided to develop a graphical user interface for JS to capture the traceability data in regular time
intervals manually.

Furthermore, the online computation methods developed within CIRC4Life (see ​Dynamic Eco Scores) can
provide him with an up to date view of the current ecological performance of the individual parts of his farm.

11

This way, he can adapt much more quickly and evolve his business towards a more eco-friendly production on
a monthly instead of a yearly time scale.

Providing the information on the ecological debt associated with JS’s products to the end customer was
identified to be less relevant in this case, since he has a personal relation to most of his customers and they
are quite well informed about his ecological efforts, anyway. Nevertheless, providing quantitative comparison
of his ecological performance, in particular in direct comparison to the conventionally produced vegetables on
offer in supermarkets, will improve his credibility through transparency.

Electronics Recycling and Reuse

A major development of CIRC4Life is the business model of collecting small electronic devices, such as tablets
and mobile phones, from the end user for reuse and recycling. To facilitate the collection, smart bins are set
up in central public locations and schools. IND will collect the electronic waste in the demonstration of this
use case. The devices are then accessed in terms of reusability. They may be repaired/re-manufactured and
then sold at low prices to institutions which do not demand the latest cutting edge technology devices, in
particular to schools. If the devices are found to be broken, they are recycled. Even if the project only achieves
an increased recycling rate of electronic devices, this will be a success, given the currently very low rates. For
further details of the business model underlying this use case, please refer to Deliverable 2.1.

A sequence diagram that shows all steps of this demonstration that are to be supported by the Traceability
Platform is shown in the Figures below. First an end user decides to recycle one of his devices using the
CIRC4Life tools (see ​Figure 2​). The customer can identify himself to the smart bin using a QR Code scan from
the Recycling and Reuse mobile application developed by NTU. The bin then prints a label with a barcode to
be attached on the item before throwing it into the bin. In the background, the application and the bin send
the relevant information to the Traceability system which can hence set up tracking of the recycled item, or
continue the track if the item is already known to CIRC4Life, because it was bought using the CIRC4Life eco
shopping application.

Figure 2: Sequence diagram for disposal of electronic devices at a smart bin.

12

The latest status of any item being tracked by the Traceability Module can be queried using the web service
endpoint, which EECC developed specifically for this purpose. A lightweight caching database is used on top of
the Traceability Module core in order to provide very fast response times here, since this is a crucial feature
for the user experience. See ​Figure 3​ for a depiction of the sequence of interactions.

Figure 3: Sequence diagram for information query of electronic devices disposed at a smart bin.

After IND collects the electronics item from the bin, it is inspected and rated at IND’s plant. The Traceability
Module captures the data through a user interface and then pushes it to the CIRC4Life ICT platform where eco
credits are calculated and stored (see ​Figure 4​).

13

Figure 4: Sequence diagram for the inspection of electronic devices at IND’s facilities.

Food Waste Recycling

The sequence of events and also the data flow for this use case are very similar to the one depicted in Section
Electronics Recycling and Reuse​. Here the collection of bio waste is demonstrated and reuse/remanufacturing
is not an option. Nevertheless, the material is disposed in a suitable bag, rated and eco credit is provided
based on the recyclability of the waste. For details of this use case, please also consult Deliverable 2.2.

Solution Strategy

The goal of tracing ecological impacts with EPCIS technology as detailed in Section ​Dynamic Eco Scores poses a
challenge. Since the EPCIS standard was not developed with the tracking of environmental impacts in mind,
EECC has identified a big innovation potential in making use of the flexibility of the standard and developing
an ​EPCIS Extension for Ecological Impacts​. This was done in close cooperation with the LCA experts within the
consortium, in particular CIRCE, Swerea and GS1G. The extension makes it possible to capture the essential
information about resource usage, waste production, and other environmental or social impacts associated
with any business event that is recorded via EPCIS. The extension is described in detail in Section ​The EPCIS
Extension for Ecological Impacts​. It will be fully compatible to the upcoming version 2.0 of the EPCIS standard.

In order to demonstrate the functional potential of the extension, EECC implements it in all demonstrations
that involve partners along the supply chain (T 6.2 / T 6.4 / T 6.5). Here traceability data will be collected,
including data about ecological impacts for specific products within CIRC4Life Demos. This data is made
accessible for the dynamic computation of eco scores. To this end, EECC deploys the Traceability Module as
Software as a Service (SaaS) running on a German cloud managed by EECC. All Services are developed as

14

RESTful web services (RWS) and all user interfaces developed by EECC are web interfaces. This modern
approach of developing software is most fit for the application in a quite dynamic context with requirements
evolving along with the software as in CIRC4Life and with many different partners, processes and software
systems that need to be connected and different user equipment such as mobile phones, tablets and Laptops
that are used to display the interfaces. Web services and interfaces can be accessed regardless of operating
systems, programming languages or other environmental parameters at the partner’s or user’s site.

The Traceability Module also uses a service oriented design internally. The components are separated into
largely independent web services and groups of related services run in separate docker containers. This allows
for a clear separation of the software components and provides maximal reusability of components also in
other contexts. It also makes the system more resistant to failures of individual components.

The user interfaces are internationalised and localised for the regions where the demonstrations will be
implemented.

System Scope and Context

The primary purpose of the Traceability Module is to capture and store data about specific events, i.e. what
happens to specific items, along with metadata about the events, such as when and where the event happens.
In addition, the Traceability Module collects as much information about ecological impacts as possible along
with every event.

The scope of Traceability Module is limited to dynamic data, i.e. data which is not known a priori and which
directly relates to an individual item or to a batch of items. An example for a traceability event is the
production, processing, or shipping of a specific item at a specific point in space and time. Static master data,
such as the volume or weight of an item, that is constant for all items of the same product class, is ​not in the
scope of the Traceability Module. The EPCIS standard also covers such master data, but master data is
imported from other sources, e.g. the GS1 Registry by the interoperability layer without going through the
Traceability Module. The ecological data of primary interest in CIRC4Life is of the type of so called instance/lot
data, i.e. data that becomes available at a certain stage along the supply chain and which does not change
afterwards, such as the best before date. More precisely, impacts can be accumulated to get e.g. the total CO​2
released throughout the life cycle of a product or also across products in a certain production process. Since
the EPCIS repository is, by construction, a sequential database that never deletes information, it is particularly
suited for the aggregation of data of this type.

EECC develops user interfaces for capturing the data if this is needed to overcome the challenge of a low
digitalisation level at the data source. Nevertheless, the role of the Traceability Module in the overall system
architecture is that of a data provider, not of an end user tool. This means that the Traceability Module does
not use the collected data itself to compute eco scores and much less does it provide a particular view on the
data to the end user. Instead, EECC provides and connects to interfaces in the form of web service endpoints
in order to share the collected data for the project partners to make good use of it. The primary partner for
the Traceability module downstream the data flow is the CIRC4Life ICT Platform developed by ICCS, which is
the central hub of information within the CIRC4Life project. From here data flows to the computing services
and finally to the end user applications. A very rough sketch of the overall data flow is given in ​Figure 5​.

15

Figure 5: High level data flow diagram of the Traceability Module.

Dynamic Data Sources

The project partners within CIRC4Life cover all three sectors of the value circle (see Figure 6). The production
of food and electrical equipment (ALIA, JS, KOS, ONA), the usage phase covered by the leasing/rental model
developed by KOS and the reuse and recycling phase (IND, REC) are covered. See Figure 7 for a simplified
pictogram of the value circle of e.g. consumer electronics, for which the recycling part will be demonstrated in
T 6.3.

16

Figure 6: General value circle for CIRC4Life demos.

EECC has modelled all processes along these value cycles as traceability events using the EPCIS standard.
Using this standardised description of processes, all partners can act as traceability data sources. Their data
streams flow into the Traceability Module where the central EPCIS repository acts as a data lake. Drawing
from this pool, the Traceability Module aggregates and transforms the information and brings it into formats
that are easily and quickly accessible to all partners within CIRC4Life through web services. For example the
latest known disposition and location of each tracked item is transformed and loaded into a caching database
in order to provide quick access.

17

Figure 7: Simplified data flow for the electronics recycling and reuse demonstration to the Traceability
Module.

Data Protection and Privacy

Personal (GDPR relevant) data must not be sent to the Traceability Module. Such data is not requested, nor
used anywhere. It might be technically possible to erroneously input such data into free text fields, but doing
so is explicitly forbidden. Hence the Traceability Module is not concerned with collecting or storing any kind of
personal data and no special means of private data protection are implemented.

Nevertheless, all data is stored on servers at data centers in Germany and data access is only provided upon
authorisation and only to CIRC4Life consortium members, unless there is a project management board
decision to allow wider access. All members are requested to not leak any data to third parties under the
same terms.

For considerations on how companies can effectively protect the data that is legitimately handled from
unauthorized access, see Section ​Ecological Transparency and Data Ownership Along the Supply Chain for a
more detailed description of the problem and Section ​Data Access Model for the solution developed for the
Traceability Module.

18

Building Block View

Abstracting the above Figure 7 yields the data flow diagram in Figure 8.

Figure 8: Data flow diagram through the Traceability Module.

Here the data flow has already been split into input into the Traceability Module (capturing) and data output
(accessing) layers and further into use case specific endpoints. From this data flow and endpoints picture,
EECC derived the overall system architecture for the Traceability Module given in ​Figure 9​.

19

Figure 9: Main building blocks of the Traceability Module.

The individual components are described in detail in the following sections.

Design and Development of the Core Components of the Traceability Module
The EPCIS core system of CIRC4Life is able to provide the capture and query functionalities which are specified
in the EPCIS Standard (GS1 Global, 2016) [​3​]. It fully supports the standard EPCIS data format and, in addition,
the specific extensions EECC developed within CIRC4Life WP 5. This is in particular the ECO Extension is
defined in Section ​The EPCIS Extension for Ecological Impacts​. The EPCIS core system has to store all events in
a persistent way and to accept requests to the standard SOAP query interface and provide a response
containing all matching events within near-real-time.

20

Figure 10: Components of the EPCIS core system of the Traceability Module

The EPCIS core system in CIRC4Life will be provided by EPCAT, a fully compliant EPCIS repository
implementation by EECC (see ​Figure 10​). EPCAT is provided by EECC as software as a service on servers at data
centers running in Germany.

Design and Development of Web Services

In order to collect data, EECC has defined interfaces which enable supply chain partners to connect to the
Traceability Module. EECC has developed all interfaces as RESTful Web services (RWS) utilising open API
specifications (OAS, formerly known as Swagger) in order to make it as easy as possible to integrate with the
traceability services. The service endpoints collect data in a narrow context and can hence afford to be rather
simple and easy to use, compared to the generic standard interfaces. The capturing services than take care of
adding the contextual information and transforming the data into standardised EPCIS events. EECC has also
developed the access points as RWS and provides data pushing services wherever those fit into the general
data flow model and the partners needs.

In addition to these more modern approach of using RWS and OAS, EPCAT also offers the full set of SOAP
interfaces defined by the EPCIS standard. These interfaces can be used in a more generic way to capture,
verify and validate any traceability events, or to query for any stored events. This way, the services stay
flexible to use and extend beyond the concrete events and use cases envisaged in CIRC4Life. Furthermore,
partners might choose to run their own EPCIS (core) repository in order to keep full control over their data as
discussed in detail in Section ​Data Access Model​.

21

Capturing Services

As shown in Section ​Building Block View​, see in particular ​Figure 9​, EECC has grouped the capturing service
endpoints by life time phase into three capturing applications. The applications target the production, use,
and reuse/recycling phase, respectively. Additionally, EECC anticipates the need for simplified interfaces that
enable the partners to enter dynamical data about ecological impacts that cannot be directly related to
concrete business events. The latter would ideally not be used, but practical experience shows that it is not
always possible to get the full event context for all data.

Since the applications are developed in close cooperation with the CEBMS with a particular focus on the
planned demonstrations, the recycling application is by far the most advanced. This reflects the quite mature
state of the recycling/reuse CE business model and the tablet recycling demonstration. For the other business
models and demonstrations, WP 5 had to postpone some of their planned resources until the use cases and
requirements become more clear as the work in the respective WPs progresses.

Simplified Impact Capturing

A simplified interface has been developed in order to enable the partners to record data about ecological
impacts that is already accumulated and cannot be directly related to concrete events any more. Some supply
chain partners might not trace every business event in detail and hence their data about the environmental
impact of a product for might not fit into the ideal scenario, where each impact is directly associated with a
business step. To cater for this case, EECC has developed a generic API to capture environmental input of an
item without associating it to a specific business step. The documentation of this end point can be found in
Section “Simplified Impact Capturing Endpoint” of ​Appendix 2​. This way of recording item specific impacts in a
timely manner will still enable most of the benefits of ​Dynamic Eco Scores and is hence much preferable to
not getting such accumulated data at all.

Figure 11 shows a wireframe sketch of a user Interface for submitting data to this web service endpoint. At
the current stage of the development, it seems that having the API will be enough for the purposes of the
demonstrations within CIRC4Life and hence the implementation of the user interface is currently not planned.
As mentioned above, depending on further development of the business models and demonstrations, EECC
has set some capacities aside which will be used to concretely implement the UI if this turns out to be
beneficial for a concrete case.

22

Figure 11: Generic Impact Capturing Web UI

Usage and Production Capturing APIs

The APIs developed for the production and usage phase follow a straightforward pattern. EECC has developed
a specific endpoint for each type of event to which the partners can POST the event data, including impacts.
More specific connectors to ALIA’s systems, which are already capturing traceability information, are currently
discussed and will be developed shortly, as soon as the details will have been negotiated. The “Object Event
Capturing Endpoint” (see ​Appendix 2​) can in principle handle event data in a very generic way, but it will likely
be necessary to develop endpoints more adapted to ALIA’s systems.

For the case of capturing usage data from lamp rental/leasing that is currently developed by KOS, it is still
being under discussion what is to be tracked exactly. KOS is currently in the process of designing the business
model and also the lamps, hence it is not yet clear what kind of sensors will be used and which data will be
gathered and how. Once the case is more clear, EECC will develop connection endpoints to KOS’s systems in
order to retrieve the traceability data, in particular the eco impacts.

Farming UI

EECC had some very productive discussions with JS and also input from CIRCE about the data collected for
their social LCA study. Based on these discussions, EECC has developed the concept for a web UI through
which small farm businesses with a low digitalisation level can digitalise and hence trace their processes
manually. In CIRC4Life, this UI will be used to compute dynamic ecological scorings for JS. See Section
Vegetables Production​ for the details of the user story and ​Figure 12​ for a wireframe of the UI. The “Object

23

Event Capturing Endpoint” (see ​Appendix 2​) can handle the data from the UI, although a more specific
endpoint is under consideration. The idea is, that the list of impacts can be extended by clicking the plus icon
and using a dialog similar to ​Figure 11​.

Figure 12: Farming Web User Interface Wireframe

Recycling and Reuse Capturing Application

As mentioned above, the recycling and reuse capturing application is way more advanced in development
than the other capturing applications, due to the underlying business model and demonstration case being
much more clearly developed by the partners for the time being. The purpose of the application is to keep
track of all events that happen to an item starting with the disposal by an end user.

In the CIRC4Life demonstrations, disposal happens into an intelligent bin, which facilitates the tracking. EECC
has developed an endpoint specifically to accept the data from the bin’s control module as programmed by
NTU. See ​Appendix 2 for the documentation of this “Bin Disposal Event Receiving Endpoint”. See ​Figure 2 for
the sequence diagram of the user story for tablets. The more general story also includes bio waste recycling.
As discussed with ALIA, the demonstration owners of this case, the steps in the sequence are essentially the
same.

The next step is the collection and inspection/rating of the waste. For the tablet case, see ​Figure 4​. Again, the
procedure for bio waste is planned to be similar, only the data input into the Traceability Module might
happen by other means, i.e. by an to be defined API/connector or a more simple user interface than in the
tablet case.

In order to get the inspection data from IND, EECC has developed a web based user interface. See Section
Recycling Evaluation Capturing Web Interface​ below for the details.

The UI is connected via a service endpoint to the Recycling/Reuse Application which transforms the data into
the EPCIS standard format and delivers into the EPCIS core via the standard SOAP interface. All components
are running as SaaS in order to deliver the traceability data to the EPCIS core. This is the general setup used
for all capturing endpoints.

Once the data arrives at the core, a subscription forwards it to the accessing application where it is
transformed and pushed to the ICT platform. To this end, ICCS and EECC have developed suitable endpoint to
integrate the Traceability Module with the CIRC4Life ICT Platform (T5.4). The overall development for the

24

various connection points is ongoing, but the endpoint to send the recycling evaluation data from the
Traceability Module to is already well developed and ready to use. The full data flow from the evaluation UI
through the capturing application, EPCIS core, and accessing application to the ICT platform using the
commonly developed web service was implemented up front to serve as and example and system test case
for similar data flows being implemented.

Recycling Evaluation Capturing Web Interface

It was discussed how traceability (WP 5) can be put to good use for the CEBM Collaborative Recycling/Reuse
(WP 2) at the CIRC4Life innovation camp in Krakow. Since the digitalisation level at the recycling facilities is
not very high, it was found that a user interface needs to be developed in order to be able to capture the
relevant data for the demonstration (T 6.3) of this CEBM. Consequently, EECC has developed a simple web UI
through which the workers at the recycling facility can capture the data from the barcode printed by the
intelligent bin and add information about the end of life state and estimated lifetime of the product. A
handheld (USB) barcode scanner can be used with the web UI. See ​Figure 13 below for screenshots. The UI is
deployed and functional. Please have a look at ​https://circ4life.eecc.info/​ for a live demonstration.

Figure 13: GUI for Inspection of disposed EEE items at IND.

25

https://circ4life.eecc.info/

Accessing Services

Dynamic Eco Data

The most important service endpoint developed is the one by which all information about the ecological
impacts of an item is provided. Making this data available within CIRC4Life is the primary goal of the
Traceability Module, since this enables the dynamic (online) calculation of eco scores (eco points, credits, and
debit as well as possibly other scores) for each individual item that is traced throughout the project. The
“Total Impact Endpoints” (see ​Appendix 2​) heve been developed to deliver this data. However, the exact data
flow and whether the endpoint as developed by EECC is in this form useful to NTU could not yet be discussed.

Item Status

EECC has implemented a service endpoint through which it is possible to query for the status, i.e. the last
known disposition and location, of an item. This can be used in the demos to implement simple tracking user
stories as for example described in Section ​Electronics Recycling and Reuse​, ​Figure 3​. Consult the “Item Status
Endpoint” sections in ​Appendix 2​ for the documentation of the flavours of this endpoint.

Bin Filling Overview

EECC have developed an API through which the filling levels of all bins is made available. The purpose of this
web service is to support the recycler in planning the collection tours. EECC propose a simple map-like user
interface (see ​Figure 14​) order to support this user story. The details are still to be discussed with the
demonstration owners.

26

Figure 14: Map like UI for collection tour planning

Design and Development of Core Features of the Traceability Module

Of course, EECC has developed the inter-connection between the Traceability Module’s internal components
as shown in Section ​Building Block View​. Here the standard EPCIS SOAP interfaces are used and in particular a
subscription which facilitates the continuous data flow from the EPCIS core (EPCAT) to those accessing
applications which use caching or are pushing data to the ICT platform. Internal APIs to connect the web user
interfaces to their services have been part of the UI development. This is state of the art technology and will
not be described in more detail here.

Instead, the focus of this section is on novel traceability innovations developed specifically in this project. In
particular, EECC has developed a new concept to enable all partners to maintain full control over their data
and fine granular access rights management while using standard EPCIS tools. The details are described in
Section ​Data Access Model below. This concept might be needed in order to enable adaption of the idea of
sharing dynamic ecological data beyond a relatively small consortium as in the CIRC4Life demonstrations.
Notice that it is applicable to EPCIS based traceability solutions in general and adresses a problem often
occurring in practise.

27

The ​EPCIS Extension for Ecological Impacts was developed specifically to collect and share data about
ecological impacts. As explained in section ​Dynamic Eco Scores​, this collection of primary data is essential for
the computation of dynamic eco scores, which is a major innovation of the CIRC4Life project as a whole.

Data Access Model

A problem similar to the challenge identified in section ​Ecological Transparency and Data Ownership Along the
Supply Chain has been discussed in ​[1] and ​Appendix 1​. How can the sharing of (the relevant parts of)
traceability data along the chain of custody be enabled while, at the same time, protecting the data from
unauthorised access and preventing the leakage of business relevant information, such as production
volumes? Part of this problem is also tackled in the ongoing development of the Version 2.0 of the EPCIS
standard. After private discussion with Ralph Tröger and Matthias Guenther, authors of the aforementioned
papers, EECC has developed an EPCIS 1.2 compatible way of using the central ideas from ​[1] without the need
to create a network of services on top of the EPCIS repositories that hold the actual data. Like in ​Appendix 1​,
the approach proposed in this section is purely peer to peer, but using only established standards, namely
EPCIS 1.2 ​[3]​ and named identifiers ​[2]​.

CIRC4Life uses a centralised ICT architecture. All traceability data is gathered in a central EPCIS repository at
the heart of the Traceability Module. In this setup, state of the art technology can be used to provide fine
grained access control using an appropriate user/group/role role models by providing single sign on and token
based access, as mentioned in Section ​Data Protection and Privacy​. A free software implementation of the
Kerberos protocol will be used for this purpose and the Traceability Module implements a suitable client to
consume the access tokens issued by the master service at the ICT platform.

Nevertheless, it is foreseeable that adaption of the traceability solutions beyond CIRC4Life might make a more
decentralised approach necessary, where at least some of the companies along the value chain host their own
EPCIS repositories in order to keep full control over the stored data. EECC has therefore adapted some of the
ideas from ​[1]​ and ​Appendix 1​ to develop a solution for this setup.

It is assumed throughout this section that the user who wants to gather information about ecological impact
(or some other traceability information for that matter) has an item identifier and knows a URL to an endpoint
of a host that holds some traceability information. For example, a customer might have bought an item with
an SGTIN from a vendor who offers his traceability information. The entry point might also be a named
identifier (see below). It is further assumed that the chain of EPCIS events recorded for this item is connected,
i.e. starting from the initial event, each company hosting traceability information about this item or its
compounds holds references to the companies up or down the chain of custody such that all involved
partners can (indirectly) be reached.

The system of lookups described in the following is envisaged to be implemented in the client software.
Consequently, it will be transparent to the end user, such that the user experience is the same whether the
data comes from a single source, as in CIRC4Life, or whether the protocol described in this section is executed
in order to gather the data.

Named Information AKA Hash URIs

An important technology that can be used in order to conceal data content while at the same time providing a
proof of integrity is the URI scheme to name things with hashes as described in the IETF’s RFC 6920 ​[2]​. A brief
summary of the main technical points is given here for the reader’s convenience.

The URI scheme identifier is “ni” which stands for named information. An authority (such as a domain name)
may optionally be given in order to retrieve the referenced resource. For the scheme developed here, the
authority shall always be included. It is followed by the specification of the hashing algorithm (typically

28

“sha-256”) followed by the hash value of the resource. In the present case, the data to be hashed will always
be a string and usually a URI, but it may also be a fixed string representation of a complex XML element. To
this hash value, a query string may be appended. In summary, the named information (NI) URI format is

ni://authority/alg;val?query-string

which by definition (​RFC 6920​) refers to a lookup at

https://authority/.well-known/ni/alg/val?query-string

which might return a redirect (HTTP status code 3xx) to the actual URL of the resource.

For example 1

ni://circ4life.eecc.info/sha256;​yIY5qGjUN52l48ROiNJgvib79gcKVldwE8wXAwykd-Y?ct=text/plain

can be looked up at

https://circ4life.eecc.info/.well-known/ni/sha256/yIY5qGjUN52l48ROiNJgvib79gcKVldwE8wXAwy
kd-Y?ct=text/plain

to yield

urn:epc:id:sgtin:4047111.012345.1234567890

The hash of this SGTIN URN string is indeed ​yIY5qGjUN52l48ROiNJgvib79gcKVldwE8wXAwykd-Y, ​hence the

receiving party can be sure that the correct information has been received.

Security Gained by Using Named Information

A cryptographic hashing function, such as sha256, has the property of concealing the input. No information at
all about the input can be deduced from the output. Being a function, the hash still produces a unique output
whenever fed the same input, hence it can be used to check data integrity. This leads to the well known
scheme of publicly disclosing the hash of some piece of sensitive data while keeping the data itself secret.
Upon authorised request, the data can be handed out and the requesting party can check the integrity by
computing the hash and comparing to what has been published.

The additional advantage of using named information URIs, in particular including a host name, is that it
canonically translates into a URL from which the referenced data can be requested. The owner of the host can
guard the data by implementing identification/authorisation requirements and access management as he sees
fit.

Thread Model

If the amount of data to be concealed is very small, a typical attack by an unauthorised party interested in the
data is to just brute force hashing all possible values until the outcome matches the published one. When
hashing static IDs, such as GLNs, there is the additional problem that the same hash for the same ID will
appear quite often.

For example, if a company wants to conceal the GLN of a trading partner by using a NI, an attacker will likely
be able to narrow down the list of possible values to a very small set by just looking up the GLNs of plausible
partners. Hashing all candidates will unconceal the GLN in no time.

1 All example hashes in this document are generated using the standard linux sha256sum implementation
https://linux.die.net/man/1/sha256sum​ and converted to bas64URL (from the standard hex output) via ​xxd -r -p
https://linux.die.net/man/1/xxd​ and ​https://linux.die.net/man/1/base64​ (changed to URL form, see
https://www.rfc-editor.org/rfc/rfc4648#page-7​).

29

https://circ4life.eecc.info/.well-known/ni/sha256/Yn-49Dnss3FRxJQrpmmdZ5fwYyNiJjMXHeL1VNpuLJI?ct=text/plain
https://circ4life.eecc.info/.well-known/ni/sha256/Yn-49Dnss3FRxJQrpmmdZ5fwYyNiJjMXHeL1VNpuLJI?ct=text/plain
https://linux.die.net/man/1/sha256sum
https://linux.die.net/man/1/xxd
https://linux.die.net/man/1/base64
https://www.rfc-editor.org/rfc/rfc4648#page-7

As explained in ​https://www.rfc-editor.org/rfc/rfc6920.html#section-10​, the named information scheme was
developed to provide a proof of integrity and matters of effectively hiding or securing information are out of
scope.

The well known solution to this problem is to use salts. Salting a hash means that a random nonce is
appended to the data to be hashed before the hashing. The effect is similar to encryption. Without knowledge
of the salt, it is impossible to produce the hash value even if the original value is known or correctly guessed,
provided the salt is long enough (has enough entropy) and unknown to the attacker.

See section “​Double Envelope​” for the concrete implementation in this context.

Solution

After describing the general ideas, this section describes the setup which solves the mentioned problems.

In order to run a distributed Traceability Module, each company may run its own EPCIS Core as defined in
section ​Building Block View​. Additionally, lookups as defined in section ​Named Information (Hash) URI must
be supported, i.e. requests to ​https://host/.well-known/ni/sha256/{hash_value} to a suitable
company owned host name need to be answered. Answers to all queries, i.e. named information as well as
standard EPCIS queries, are subject to identification and authorisation of the requesting client. This way, the
companies running their own EPCIS core retain full control over who may access their data.

The data owner may, at his own discretion, conceal any value of any XML element in EPCIS events stored in
their repository by replacing the concealed XML data with a named information (NI) URI. This way of
sanitization can for example replace the GLN or some or all of the EPCs, if the company does not want to
reveal which asset or which location is involved.

Companies are free to implement any authorisation mechanism they see fit and protect more sensitive data
inside EPCIS events with stronger authentication requirements. For example, the concealed EPCIS events
might be public, while the included NIs are only be resolved upon authorized request.

Double Envelope

An important point is that the authority component of the NI should always point to the data owner’s own
host. This allows to reveal only less sensitive information and then step by step more sensitive data. For
example, the ecological impacts, most relevant to CIRC4Life, can be shared with a broad audience while
keeping more sensitive data subject to stricter authorisation constraints. Applying more and more strict rules
in each successive round of deeper NI lookups, arbitrary access models can be implemented.

One place where references to partners up or down the supply chain may occur are host names in the NI URN.
For example, if the input EPCs into a transformation event are concealed in a sanitized event, one should not
refer to foreign hosts directly, even if that is the correct source to query for the EPC. If a foreign host name is
revealed, the business relation to that partner is leaked. Instead, the NI URN should be concealed as the
information content of another NI at the companies own host. For example, instead of including

<epc>ni://myPartnersHostName/sha256;Yn-49Dnss3FRxJQrpmmdZ5fwYyNiJjMXHeL1VNpuLJI</epc>

in an EPCIS event, one should use

<epc>ni://myOwnHostName/sha256;EXnMeueUZi9lCeDVxu8LPxxbwnHoMYb8G-oHUC28C_U</epc>

A lookup to the URL associated with the latter, i.e.

https://myOwnHostName/.well-known/ni/sha256/EXnMeueUZi9lCeDVxu8LPxxbwnHoMYb8G-oHUC28C_U

then yields the above NI referring to the partner. Importantly, this final lookup can again be guarded. Only
after checking that the requesting party is allowed to access this business relevant piece of information is the

30

https://www.rfc-editor.org/rfc/rfc6920.html#section-10

NI URN resolved, otherwise the host returns a 401/403 HTTP error code indicating that the request is not
authorised.

As mentioned in section “​Thread Model​”, a particularly interesting case is that of referring to another
company directly by e.g. using there GLN as the value in one of the EPCIS event fields. For example, the source
or destination fields in shipping/receiving events or business transactions might contain GLNs of partners,
which is at the same time quite sensitive information and one which is vulnerable to brute force hash reversal
attacks.

Here, the same double-lookup idea can be used in order to salt hashes with a query parameter. This avoids
the problem of hashing short/static information such as GLNs mentioned in Sectio ​Thread Model and at the
same time uses the original NI scheme exactly as defined in ​[2]​. More concretely, if the SGLN

urn:epc:id:sgln:4047111.12345.0001

which has a sha256 hash of ​JD80Y6vKGJ1DlH6H5gdQF8MZr_EEWB02gBEo8EPCuDE is to be concealed, one
should not use

ni://myOwnHostName/sha256;JD80Y6vKGJ1DlH6H5gdQF8MZr_EEWB02gBEo8EPCuDE

directly, as this hash is vulnerable to brute force reversal. Instead using

ni://myOwnHostName/sha256;AWNwq9Cqb-biQl9hC670i-pHHAD1Qpq32bE39xrcaHI

which is (upon authorised request) resolved to

ni://myOwnHostName/sha256;JD80Y6vKGJ1DlH6H5gdQF8MZr_EEWB02gBEo8EPCuDE?salt=634202135

means using a salted hash. A random number has been added as a “salt” query parameter. This salt effectively
defeats the brute force attack and is just ignored by the host when answering the corresponding URL query.

Comparison to the State of the Art

The process of concealing data within sanitized EPCIS events by using named identifiers as developed by the
EECC within CIRC4Life and described in this section can be viewed as a simplified version of similar ideas
presented in ​[1]​.

In contrast to that approach, no extra visibility and discovery services are needed on top of the core EPCIS
repositories maintained by each data owning company. As in ​Appendix 1​, a pure peer to peer approach is
used, but the scheme proposed here uses EPCIS for the “node” as well as the “data” such that no new formats
have to be introduced and existing standards are utilized.

In the approach introduced in this section, the data owners keep full control but also full responsibility not
only over who may access their data but they are also responsible for sanitizing events and concealing the
parts they find relevant. These considerations have to be included in the design and setup of their local
Traceability Modules. The nested data storage model, which is more complex in the current setup than in ​[1]​,
needs to be baked into the capturing applications. Another drawback is the more complex lookup. In this
model, a client has to identify himself to each company and retrieve the EPCIS events in multiple steps and on
top successively lookup the named identifiers.

EECC does not consider these points as major drawbacks. In general, the lookup process of the client is easily
automated. For this use case, high speed is of less concern when looking up complete event chains across
multiple companies. In CIRC4Life, the authorized client is e.g. the eco score calculating module, which only
needs to look up the total dynamic impact data for a given item if new impacts have been recorded and a new
calculation is necessary. Otherwise, cached eco scores can be used if high speed lookups are needed.

31

Including salts or concealing foreign hosts by using ​Double Envelope​s makes it possible to store everything in a
consistent way without the need of maintaining additional masking code tables as in ​[1]​, which offsets the
more complex structure of the actual data storage.

Notice that the solution presented here does not require any extension to the existing EPCIS 1.2 standard ​[3]​.
Also named identifiers are used exactly as specified in ​[2]​, with the slight modification of allowing for a salt
query parameter, which is to be ignored in queries anyway. This means that the solution developed here is
fully consistent with existing standards and uses only one extra feature (named information URIs) on top of
the regular EPCIS core repository in order to achieve the goal of enabling every data provider to maintain full
control over the data access and at the same time providing a usable way of gathering data from the whole
supply chain.

Examples

Receiving an item

In the following example EPCIS event, the values of an EPC and a bizLocation id where replaced with
double-enveloped named identifiers as explained in Section ​Double Envelope​. This way, the EPCIS event can
be published without disclosing the actual epc of the item, the trading partner, or the location where it
arrived. What is published is the information about the ecological impact, which is hence publicly associated
to the NI (EPC). To get more information from the other supply chain partners, a client will have to identify
himself to ​circ4life.eecc.info ​where the information owner can decide to grant or deny access to the
EPC behind the named identifier. If access is granted, the foreign host and original hash are revealed and the
client can go on querying the foreign host. The supply chain partner can now decide himself whether to reveal
the information or not. This example illustrates that all involved parties keep full control over sensitive
information such as their trade relations and the items produced in their facilities.

<?​xml version=​"1.0"​ ​?>
<​epcis:ObjectEvent​ xmlns:epcis=​"urn:epcglobal:epcis:xsd:1"
xmlns:epcglobal=​"urn:epcglobal:xsd:1"​ xmlns:c4l="​https://circ4life.eecc.info/epcis​">
 <​eventTime​>2018-06-19T13:48:41.687Z</​eventTime​>
 <​eventTimeZoneOffset​>+02:00</​eventTimeZoneOffset​>
 <​epcList​>
 <​epc​>
ni://circ4life.eecc.info/sha256;EXnMeueUZi9lCeDVxu8LPxxbwnHoMYb8G-oHUC28C_U

 </​epc​>
 </​epcList​>
 <​action​>OBSERVE</​action​>
 <​bizStep​>urn:epcglobal:cbv:bizstep:arriving</​bizStep​>
 <​bizLocation​>
 <​id​>
ni://circ4life.eecc.info/sha256;KQdhgBpHGsA1JIOCTKzw5OBfp8o_FGi66kNkn1q3mSk

 </​id​>
 </​bizLocation​>
 <​c4l:transportList​>
 <​c4l:transportation​>
 <​c4l:vehicle​>http://purl.org/vso/ns#Truck</​c4l:vehicle​>
 <​c4l:distance​>
 <​c4l:quantity​>500</​c4l:quantity​>

32

 <​c4l:uom​>KMT</​c4l:uom​>
 </​c4l:distance​>
 </​c4l:transportation​>
 </​c4l:transportList​>
</​epcis:ObjectEvent​>

Hiding More Complex Information

If more complex information is to be concealed, one can also replace the value of complex XML elements with
named identifiers.

For example, the whole EPC list in Section ​Bin Disposal​ could be replaced by

<​epcList​>
ni://circ4life.eecc.info/sha256;lflK68UnrPSCqL_Rfg3ZRTRET-_yBvZRtEabAboiK1A

</​epcList​>

where the named identifier encodes

 ​<​epc​>​https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345​</​epc​>
 <​epc​>urn:epc:id:sgtin:4047111.012345.12345678901</​epc​>

This simple example also reveals a subtle problem of hashing complex values. The exact formatting matters

for hashing. Changing whitespace such as adding a space or using different line endings does not change the

content, i.e. the data represented by the XML, but it changes the hash value.

This is a typical problem when hashing XML (see e.g. ​[7] for a discussion of the problem in the context of

signing XML and ​[8] for a generic solution). In this use case, this is not of concern. The information owner

hashes the content and provides it in exactly the form that yields the revealed hash. This way, a client

requesting the information can check its integrity directly upon receival.

The EPCIS Extension for Ecological Impacts

The CIRC4Life Eco Extension, which was first specified in D 5.1, Section 7, has been further developed. This
extension to the EPCIS 1.2 standard ​[3] is the most important development of the Traceability Module for
CIRC4Life since it enables to capture ecological impacts together with any business event recorded. Hence the
data for accessing the life cycle of individual items can be gathered and processed. Another use case is to
break down the ecological impact of a supply chain or a company into specific process steps in order to
identify the hot spots in order to improve the overall impact most efficiently.

Making use of the extensibility of the EPCIS standard, all XML elements defined in the following schema can
optionally be added to EPCIS events.

XML Schema Definition (XSD)

The following XSD formally specifies the extension to the EPCIS standard. Version 2.1.0 shown here is the
latest version at the time of writing. The current version is available online at ​[10]​, where Semantic Versioning
[9] is used to clearly indicate the type of changes to previous versions. An effort is made to ensure that the
specification is not only machine readable, but at the same time human understandable by adding comments
to explain all XML elements.

33

https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345

<?​xml version=​"1.0"​ encoding=​"UTF-8"​?>
<​xs:schema​ xmlns:xs=​"http://www.w3.org/2001/XMLSchema"
 xmlns:epcglobal=​"urn:epcglobal:xsd:1"
 xmlns:epcis=​"urn:epcglobal:epcis:xsd:1"
 xmlns:c4l=​"https://circ4life.eecc.info/epcis"
 targetNamespace=​"https://circ4life.eecc.info/epcis"
 elementFormDefault=​"qualified"​>

 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>

 This document describes the eco-extension developed within the CIRC4Life research project.

 This project has received funding from the European Union's Horizon 2020 research and innovation

 programme under grant agreement No 776503.

 The purpose of this extension is to gather data about ecological impacts along with potentially

 any EPCIS event. This is done in order to enable a dynamic (online/real time) assessment of the

 ecological footprint and impact of an individual product based on primary data.

 <​copyright​>Copyright 2018-2019 European EPC Competence Center GmbH (EECC)</​copyright​>
 <​licence​>
 This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

 License.

 See http://creativecommons.org/licenses/by-sa/4.0/ for details.

 </​licence​>

 <​disclaimer​>
 THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF

 MERCHANTABILITY, NON INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

 ARISING OUT OF THIS SPECIFICATION. EECC disclaims all liability for any damages arising from

 use or misuse of this Standard, whether special, indirect, consequential, or compensatory

 damages, and including liability for infringement of any intellectual property rights,

 relating to use of information in or reliance upon this document.

 EECC retains the right to make changes to this document at any time, without notice. EECC

 makes no warranty for the use of this document and assumes no responsibility for any errors

 which may appear in the document, nor does it make a commitment to update the information

 contained herein.

 </​disclaimer​>
 <​specification​>
 EPCIS Extension for Ecological Impacts - Version 2.1.0

 </​specification​>
 </​xs:documentation​>
 </​xs:annotation​>

 ​<!--
 The following specifications from the EPCIS 1.2 standard may be fetched from

 https://www.gs1.org/docs/epc/epcis_1_2_schema-20160929/

 copies are kept at

 https://circ4life.eecc.info/doc/

 -->

 <​xs:import​ namespace=​"urn:epcglobal:xsd:1"
 schemaLocation=​"https://www.gs1.org/docs/epc/epcis_1_2_schema-20160929/EPCglobal.xsd"​/>
 <​xs:import​ namespace=​"urn:epcglobal:epcis:xsd:1"
 schemaLocation=​"https://www.gs1.org/docs/epc/epcis_1_2_schema-20160929/EPCglobal-epcis-1_2.xsd"​/>

34

 ​<!-- simple types →

 <​xs:simpleType​ name=​"lifeTime"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 (Estimated) time from manufacturing until disposal of an item or good

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:duration"​/>
 </​xs:simpleType​>

 <​xs:simpleType​ name=​"UNUKey"​>
 <​xs:annotation​>
 <​xs:documentation​>
 The UNU-Key describes the WEEE category of a device. See

 https://unu.edu/projects/e-waste-quantification.html#outputs

 Examples of relevance in CIRC4Life:

 0303 - Laptops (incl. tablets)

 0306 - Mobile Phones (incl. smartphones, pagers)

 0402 - Portable Audio and Video (f.i. MP3, e-readers, car navigation)

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:nonNegativeInteger"​/>
 </​xs:simpleType​>

 <​xs:simpleType​ name=​"HSCode"​>
 <​xs:annotation​>
 <​xs:documentation​>
 The Harmonized Commodity Description and Coding System, also known as

 the Harmonized System (HS) of tariff nomenclature is an internationally

 standardized system of names and numbers to classify traded products.

 UNUKeys correspond to (usually more than one) HS Code, but HS Codes

 are more fine grained and many HS codes to not have any corresponding

 UNU Key.

 See https://www.foreign-trade.com/reference/hscode.htm

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:nonNegativeInteger"​/>
 </​xs:simpleType​>

 ​<!-- Resources -->

 <​xs:element​ name=​"resourceList"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 List of Resources consumed/used up in the business step

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:complexType​>
 <​xs:choice​ maxOccurs=​"unbounded"​>
 ​<!-- Standard EPCIS -->
 <​xs:element​ name=​"epc"​ type=​"epcglobal:EPC"​/>
 <​xs:element​ name=​"quantityElement"​ type=​"epcis:QuantityElementType"​/>

 ​<!-- CIRC4Life specific -->
 <​xs:element​ name=​"resourceElement"​ type=​"c4l:resourceElementType"​/>
 </​xs:choice​>
 </​xs:complexType​>

35

 </​xs:element​>

 <​xs:complexType​ name=​"resourceElementType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 ResourceElement is different from quantityElement in allowing for more general resource

 (water, electricity,...) than an EPCClass and additionally the source of each resource

 (renewable, primary/secondary, ...) may be specified.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​>
 <​xs:element​ name=​"resource"​ type=​"c4l:resourceType"​/>
 <​xs:element​ name=​"amount"​ type=​"c4l:measure"​/>
 <xs:element name=​"source"​ type=​"c4l:sourceType"​ minOccurs=​"0"​/>
 </​xs:sequence​>
 </​xs:complexType​>

 <​xs:complexType​ name=​"measure"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 This type optionally contains a number with an optional unit of measure.

 It can be used to quantify countable or measurable quantities of resources

 (liters of water, Wh of energy, etc.) or waste, distances, etc.

 Utilising the flexibility in the UOM type, it is possible to also use any scale, also

 qualitative ones.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​ minOccurs=​"0"​>
 <​xs:element​ name=​"quantity"​ type=​"xs:decimal"​/>
 <​xs:element​ name=​"uom"​ type=​"c4l:UOMType"​ minOccurs=​"0"​/>
 </​xs:sequence​>
 </​xs:complexType​>

 <​xs:simpleType​ name=​"UOMType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 This type is the same as epcis:UOM, but for the restriction to allow only certain units in

 epcis.

 It is strongly recommended to use a code from the list published in "Recommendation No. 20:

 CODES FOR UNITS OF MEASURE USED IN INTERNATIONAL TRADE" by the UNITED NATIONS ECONOMIC

 COMMISSION FOR EUROPE.

 If some other measure is used, the URI of the corresponding ontology SHOULD be used.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:string"​/>
 </​xs:simpleType​>

 <​xs:simpleType​ name=​"resourceType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 Resources which do not fit into an EPCClass such as water, electricity, etc. can be specified

 in a resource element. It is usually preferable to use an EPC (class) for the used resource,

 if available.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:anyURI"​/>
 </​xs:simpleType​>

36

 <​xs:simpleType​ name=​"sourceType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 Where the resource is taken from, e.g. energy might be from a renewable or from a fossil

 source, materials may be primary or secondary (recycled), etc.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:anyURI"​/>
 </​xs:simpleType​>

 ​<!-- Waste -->

 <​xs:element​ name=​"wasteList"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 List of waste produced in the business step

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:complexType​>
 <​xs:choice​ maxOccurs=​"unbounded"​>
 ​<!-- Standard EPCIS -->
 <​xs:element​ name=​"epc"​ type=​"epcglobal:EPC"​/>
 <​xs:element​ name=​"quantityElement"​ type=​"epcis:QuantityElementType"​/>

 ​<!-- CIRC4Life specific -->
 <​xs:element​ name=​"wasteElement"​ type=​"c4l:wasteElementType"​/>
 </​xs:choice​>
 </​xs:complexType​>
 </​xs:element​>

 <​xs:complexType​ name=​"wasteElementType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 WasteElement is similar to ResourceElement but denoting waste produced instead of resources

 consumed

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​>
 <​xs:element​ name=​"waste"​ type=​"c4l:wasteType"​/>
 <​xs:element​ name=​"amount"​ type=​"c4l:measure"​/>
 <​xs:element​ name=​"sink"​ type=​"c4l:sinkType"​ minOccurs=​"0"​/>
 </​xs:sequence​>
 </​xs:complexType​>

 <​xs:simpleType​ name=​"wasteType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 Waste such as polluted water, exhaust fumes, etc.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:anyURI"​/>
 </​xs:simpleType​>

 <​xs:simpleType​ name=​"sinkType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 Where the waste is disposed (released, treatment, landfill, burning for energy,...)

37

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:anyURI"​/>
 </​xs:simpleType​>

 ​<!-- Transportation -->

 <​xs:element​ name=​"transportList"​>
 <​xs:complexType​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 If the environmental impact of transportation can not be broken down into resource

 consumption (fuel,...) and waste (exhaust fumes,...) then a transportList can be used

 instead.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​>
 <​xs:element​ name=​"transportation"​ type=​"c4l:transportElementType"​ maxOccurs=​"unbounded"​/>
 </​xs:sequence​>
 </​xs:complexType​>
 </​xs:element​>

 <​xs:complexType​ name=​"transportElementType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 How far and by which means

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​>
 <​xs:element​ name=​"vehicle"​ type=​"c4l:vehicleType"​/>
 <​xs:element​ name=​"distance"​ type=​"c4l:measure"​/>
 </​xs:sequence​>
 </​xs:complexType​>

 <​xs:simpleType​ name=​"vehicleType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 The type of vehicle such as lorry, plain, boat, etc.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:anyURI"​/>
 </​xs:simpleType​>

 ​<!-- Other Impact -->

 <​xs:element​ name=​"impactList"​>
 <​xs:complexType​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 The list of further impacts can be used to track social or ecological impacts that are not

 associated with resource consumption or waste production such as e.g. land usage.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​>
 <​xs:element​ name=​"impact"​ type=​"c4l:impactElementType"​ maxOccurs=​"unbounded"​/>
 </​xs:sequence​>

38

 </​xs:complexType​>
 </​xs:element​>

 <​xs:complexType​ name=​"impactElementType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 The type of impact together with an (optional) suitable measure.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:sequence​>
 <​xs:element​ name=​"impactType"​ type=​"c4l:impactType"​/>
 <​xs:element​ name=​"measure"​ type=​"c4l:measure"​/>
 </​xs:sequence​>
 </​xs:complexType​>

 <​xs:simpleType​ name=​"impactType"​>
 <​xs:annotation​>
 <​xs:documentation​ xml:lang=​"en"​>
 The type of impact, such as land usage, social impacts, etc. Using an URI to refer to an

ontology within

 the semantic web.

 </​xs:documentation​>
 </​xs:annotation​>
 <​xs:restriction​ base=​"xs:anyURI"​/>
 </​xs:simpleType​>

</​xs:schema​>

Examples for Events in the Demonstration of the Recycling/Reuse CEBM

In this section, some examples for these EPCIS events that utilize ​The EPCIS Extension for Ecological Impacts
on top of the EPCIS 1.2 standard ​[3] and its core business vocabulary ​[4] are given. The sequence of events
exemplifies the process of recycling a tablet as developed in WP2 for demonstration in T 6.3. EECC has
modelled similar event chains for all use cases for the demonstrations and business models currently
developed in CIRC4Life, see D 5.1 for details.

Bin Disposal

After the Customer disposes his end of life electronics product into the smart bin, the bin sends the relevant
information to the Traceability Module. To this end, EECC has generated a suitable web service (see Section
Recycling and Reuse Capturing Application and “Bin Disposal Event Receiving Endpoint” in ​Appendix 2​) that
consumes the JSON structure as defined in “BinDisposalData” in ​Appendix 2 and produces an EPCIS standard
element like the following one (comments are added here for clarity, not actually generated).

<​ObjectEvent​>
 ​<!--
 This is an example of a bin disposal event. It records that a consumer places an end of life

 product electronic (e.g. a mobile phone) in an intelligent recycling bin. Apart from recording

 the actual data about the event, the eco extension is used in order to also track the energy

39

 used by the bin.

 -->

 <​eventTime​>2019-05-24T10:00:00.0Z</​eventTime​>
 <​eventTimeZoneOffset​>+02:00</​eventTimeZoneOffset​>
 <​epcList​>
 ​<!--
 The custom bin/obj namespace is used for the proprietary (i.e. non standard) barcode format that

 is unfortunately used by the intelligent bin operating in CIRC4Life.

 -->

 <​epc​>​https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345​</​epc​>

 ​<!--
 Example GTIN: (01)04047111123453 and Serial (21)12345678901.

 (Does not correspond to a real product.)

 -->

 <​epc​>urn:epc:id:sgtin:4047111.012345.12345678901</​epc​>
 </​epcList​>
 <​action​>OBSERVE</​action​>
 <​bizStep​>urn:epcglobal:cbv:bizstep:arriving</​bizStep​>
 <​disposition​>urn:epcglobal:cbv:disp:returned</​disposition​>
 <​readPoint​>
 <!--

 The custom bin/obj namespace is used for demonstration purposes in CIRC4Life. In a real application an

 SGLN like urn:epc:id:sgln:4047111.12345.0001 should be used.

 -->

 <​id​>https://circ4life.eecc.info/recycling/loc/00001</​id​>
 </​readPoint​>
 <​bizLocation​>
 <​id​>https://circ4life.eecc.info/recycling/loc/00001</​id​>
 </​bizLocation​>
 <​c4l:resourceList​>
 <​c4l:resourceElement​>
 <!--

 This is an example for referring to an external ontology. It is recommend to use

 an existing ontology within the semantic web whenever possible.

 -->

 <​c4l:resource​>https://w3id.org/saref#Electricity</​c4l:resource​>
 <​c4l:amount​>
 <​c4l:quantity​>0.1</​c4l:quantity​>
 ​<!-- For the table of codes, see "Recommendation No. 20: CODES FOR UNITS OF MEASURE USED IN
 ​INTERNATIONAL TRADE" by the UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE-->
 <​c4l:uom​>WHR</​c4l:uom​>
 </​c4l:amount​>
 <​c4l:source​>
http://semanco02.hs-albsig.de/repository/ontology-releases/eu/semanco/ontology/SEMANCO/SEMANCO.owl#Not-Renewa

ble_Energy_Source

 </​c4l:source​>
 </​c4l:resourceElement​>
 </​c4l:resourceList​>
</​ObjectEvent​>

Bin Collection

The intelligent bin is able to indicate its filling level to the service endpoint, hence it is possible to provide an

overview over the bins and their filling levels to the recycling company. Taking this into account, the recycler

will collect the electronics.

40

https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345

<​ObjectEvent​>
 ​<!--
 ​This is an example of a bin collection event. It records that an item has been picked from
 ​an intelligent recycling bin by the recycling company.The eco extension is used in order to track the
 transportation of the item.

 -->

 <​eventTime​>2019-05-26T12:54:10.0Z</​eventTime​>
 <​eventTimeZoneOffset​>+02:00</​eventTimeZoneOffset​>
 <​epcList​>
 <​epc​>https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345</​epc​>
 </​epcList​>
 <​action​>OBSERVE</​action​>
 <​bizStep​>urn:epcglobal:cbv:bizstep:collecting</​bizStep​>
 <​disposition​>urn:epcglobal:cbv:disp:returned</​disposition​>
 <​bizLocation​>
 <​id​>https://circ4life.eecc.info/recycling/loc/00001</​id​>
 </​bizLocation​>
 <​c4l:transportList​>
 <​c4l:transportation​>
 <​c4l:vehicle​>http://purl.org/vso/ns#Truck</​c4l:vehicle​>
 <​c4l:distance​>
 <​c4l:quantity​>10</​c4l:quantity​>
 <​c4l:uom​>KMT</​c4l:uom​>
 </​c4l:distance​>
 </​c4l:transportation​>
 </​c4l:transportList​>
</​ObjectEvent​>

Inspection Event

The most important event in the process is the evaluation of the item by the recycler. The information
collected here has authority over claims by the user. For example, if a user claims that a tablet is working, but
the recycler determines it to be broken, the latter is taken into account for the calculation of rewards for the
user, such as eco credits.

<​ObjectEvent​>
 ​<!--
 This is an example of an inspection event. It records that an electronic item has been accessed by the

 recycling company and records the state of the item using EPCIS standard core business vocabulary for

 the disposition.

 -->

 <​eventTime​>2019-05-27T09:01:00.0Z</​eventTime​>
 <​eventTimeZoneOffset​>+02:00</​eventTimeZoneOffset​>
 <​epcList​>
 <!-- Example for a custom namespace for a proprietary ID generated by the bin on disposal -->

 <​epc​>​https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345​</​epc​>
 <!-- Example for using a custom namespace to store information in a custom format, such as

 brand.model.serial, to track items for which the GTIN is not known

 -->

 <​epc​>https://circ4life.eecc.info/recycling/obj/Apple.iPhone_7.12345678901</​epc​>

 </​epcList​>
 <​action​>OBSERVE</​action​>
 <​bizStep​>urn:epcglobal:cbv:bizstep:inspecting</​bizStep​>
 <​disposition​>urn:epcglobal:cbv:disp:damaged</​disposition​>
 <​readPoint​>

41

https://circ4life.eecc.info/recycling/bin/obj/1234567890119051400001112345

 <!-- Example for a custom namespace for IDs identifying individual bins. In a real application,

 an SGLN should be used instead -->

 <​id​>https://circ4life.eecc.info/recycling/loc/00001</​id​>
 </​readPoint​>
 <​bizLocation​>
 <​id​>https://circ4life.eecc.info/recycling/loc/00001</​id​>
 </​bizLocation​>
 <!-- Maximal possible life time. This estimate by the recycler is based on the manufacturing period of the

 model. It can be used to prevent the customer from cheating about the lifetime. -->

 <​c4l:lifeTime​>P5Y</​c4l:lifeTime​>
 <!-- The UNU-Key describes the WEEE category of a device. See

 https://unu.edu/projects/e-waste-quantification.html#outputs -->

 <​c4l:UNUKey​>0306</​c4l:UNUKey​>
</​ObjectEvent​>

Repairing Event

If a returned (electronics) item is found to be “reusable”, i.e. not working/sellable as is but also not broken

beyond repair, it can be refurbished to make it fit for a second life. This way of repairing and reusing an item is

much more efficient than recycling and will hence be the preferred option. The repairing event is used to

capture and store the information about this process step. In particular, information about the ecological

impact can be captured as with all events.

<​ObjectEvent​>
 ​<!--
 This is an example of a repairing event. It records that an item has repaired/refurbished to give it

 a second life.

 -->

 <​eventTime​>2019-05-27T11:05:00.0Z</​eventTime​>
 <​eventTimeZoneOffset​>+02:00</​eventTimeZoneOffset​>
 <​epcList​>
 <​epc​>https://circ4life.eecc.info/recycling/obj/Apple.iPhone_7.12345678901</​epc​>
 </​epcList​>
 <​action​>OBSERVE</​action​>
 <​bizStep​>urn:epcglobal:cbv:bizstep:repairing</​bizStep​>
 <​disposition​>urn:epcglobal:cbv:disp:returned</​disposition​>
 <​readPoint​>
 <​id​>urn:epc:id:sgln:4047111.123456.0001</​id​>
 </​readPoint​>
 <​bizLocation​>
 <​id​>urn:epc:id:sgln:4047111.123456.0001</​id​>
 </​bizLocation​>
 <​c4l:resourceList​>
 <!-- This is an example for using the eco extension to record energy consumption in a process -->

 <​c4l:resourceElement​>
 <​c4l:resource​>https://w3id.org/saref#Electricity</​c4l:resource​>
 <​c4l:amount​>
 <​c4l:quantity​>12.45</​c4l:quantity​>
 <​c4l:uom​>WHR</​c4l:uom​>
 </​c4l:amount​>
 <​c4l:source​>
http://semanco02.hs-albsig.de/repository/ontology-releases/eu/semanco/ontology/SEMANCO/SEMANCO.owl#Renewable_

Energy_Source

 </​c4l:source​>
 </​c4l:resourceElement​>

42

http://semanco02.hs-albsig.de/repository/ontology-releases/eu/semanco/ontology/SEMANCO/SEMANCO.owl#Renewable_Energy_Source
http://semanco02.hs-albsig.de/repository/ontology-releases/eu/semanco/ontology/SEMANCO/SEMANCO.owl#Renewable_Energy_Source

 </​c4l:resourceList​>
</​ObjectEvent​>

Disassembly Event

If a returned item can not be repaired or reused in any way, it is decomposed in order to recycle as much as
possible of its constituents.

 <​TransformationEvent​>
 ​<!--
 This is an example of a disassemble event that is used to record that an item is

 recycled to extract usable parts or raw materials.

 -->

 <​eventTime​>2019-05-27T10:00:10.124Z</​eventTime​>
 <​eventTimeZoneOffset​>+02:00</​eventTimeZoneOffset​>
 <​inputEPCList​>
 <​epc​>urn:epc:id:sgtin:4047111.012345.12345678902</​epc​>
 </​inputEPCList​>
 <​outputQuantityList​>
 <​quantityElement​>
 <​epcClass​>http://circ4life.eecc.info/material/copper</​epcClass​>
 <​quantity​>0.1</​quantity​>
 <​uom​>KGM</​uom​>
 </​quantityElement​>
 </​outputQuantityList​>
 <​bizStep​>urn:epcglobal:cbv:bizstep:destroying</​bizStep​>
 <​disposition​>urn:epcglobal:cbv:disp:sellable_not_accessible</​disposition​>
 <​readPoint​>
 <​id​>urn:epc:id:sgln:4047111.12345.0001</​id​>
 </​readPoint​>
 <​bizLocation​>
 <​id​>urn:epc:id:sgln:4047111.12345.0001</​id​>
 </​bizLocation​>
 <​c4l:wasteList​>
 <​c4l:wasteElement​>
 <​c4l:waste​>http://circ4life.eecc.info/material/plastics</​c4l:waste​>
 <​c4l:amount​>
 <​c4l:quantity​>0.5</​c4l:quantity​>
 <​c4l:uom​>KGM</​c4l:uom​>
 </​c4l:amount​>
 <​c4l:sink​>http://circ4life.eecc.info/sink/landfill</​c4l:sink​>
 </​c4l:wasteElement​>
 </​c4l:wasteList​>
 </​TransformationEvent​>

43

Acknowledgment

EECC would like to thank all partners in CIRC4Life, in particular the collaborators in Work Package 4 and 5, for
their valuable input and discussions. In particular thanks to ICCS for the productive collaboration in building
the software architecture for the project as a whole are in order.

The structure of this development report uses elements from the arc 42 architecture framework,
http://www.arc42.de​, created by Dr. Peter Hruschka & Dr. Gernot Starke.

References

[1] R. Tröger, S. Clanzett, R.J. Lehmann: ​Innovative Solution Approach for Controlling Access to Visibility
Data in Open Food Supply Chains​, DOI: ​http://dx.doi.org/10.18461/pfsd.2018.1817

[2] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, P. Hallam-Baker: RFC 6920 ​Naming Things
with Hashes​, ​https://www.rfc-editor.org/info/rfc6920

[3] GS1 Global, 2016. ​EPC Information Services (EPCIS) Specification - Release 1.2, ​Brussels: Global Standards
One, ​https://www.gs1.org/standards/epcis

[4] GS1 Global, ​Core Business Vocabulary Standard​ ​- Release 1.2.2​, ​https://www.gs1.org/standards/epcis

[5] GS1 Global, ​EPC Tag Data Standard - Release 1.12​,
https://www.gs1.org/standards/epcrfid-epcis-id-keys/epc-rfid-tds/1-12

[6] EECC, ​Open API Specifications of the CIRC4Life Traceability Module Endpoints​,
https://circ4life.eecc.info/doc/oas/

[7] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, E. Simon: ​ XML Signature Syntax and Processing - Version 1.1​,
https://www.w3.org/TR/xmldsig-core/

[8] J. Boyer: ​Canonical XML - Version 1.0​, ​https://www.w3.org/TR/2001/REC-xml-c14n-20010315

[9] T. Preston-Werner: ​Semantic Versioning 2.0.0​, ​https://semver.org/spec/v2.0.0.html

[10] EECC: ​EPCIS Extension for Ecological Impacts - XSD​, ​https://circ4life.eecc.info/epcis

44

http://www.arc42.de/
http://www.arc42.de/
http://dx.doi.org/10.18461/pfsd.2018.1817
https://www.rfc-editor.org/info/rfc6920
https://www.gs1.org/standards/epcis
https://www.gs1.org/standards/epcis
https://www.gs1.org/standards/epcrfid-epcis-id-keys/epc-rfid-tds/1-12
https://circ4life.eecc.info/doc/oas/
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/2001/REC-xml-c14n-20010315
https://semver.org/spec/v2.0.0.html
https://circ4life.eecc.info/epcis

Appendix

1. M. Guenther, D. Woerner: ​SupplyTree - A Federated Systems Approach to solve Supply Chain
Traceability, Pre-Release for Circ4Life​, release version to be buplished on
https://www.bosch.com/research/know-how/success-stories/economy-of-things-a-technology-and-b
usiness-evolution/

2. EECC: ​Circ4Life Traceability Module - Open API Specification​, most recent version can be found at
https://circ4life.eecc.info/doc/oas/

45

https://www.bosch.com/research/know-how/success-stories/economy-of-things-a-technology-and-business-evolution/
https://www.bosch.com/research/know-how/success-stories/economy-of-things-a-technology-and-business-evolution/

SupplyTree - A Federated Systems Approach to
solve Supply Chain Traceability

Pre-Release for Circ4Life

This is a pre-release for Circ4Life project. Released on 2019-07-25. More details
about releasing department can be found at Robert Bosch GmbH, Economy of
Things Project [3]

Authors

Matthias Guenther, Robert Bosch GmbH, Economy of Things

Dominic Woerner, Robert Bosch Schweiz, Economy of Things

Abstract / Executive Summary

In a global economy supply chains are complex networks with heterogenous
participants. From the perspective of a finished product it is hard to trace
down the individual suppliers of various hardware and software components.
This is problematic in particular in case of a recall, where affected products
and responsible suppliers have to be identified. There are different architectural
patterns to approach this problem of supply chain traceability from centralized
architectures to decentralized architectures based on blockchain technology and
federated systems. Recently, blockchain-based systems have become popular
due to their properties of auditability and immutability (i.e. tamper evidence).
However, we will argue that these properties can also be achieved with a simpler,
federated system called Supply Tree that utilizes concepts also common in
blockchain systems, like cryptographic commitments, hash chains and digital
signatures, but abandons the notion of a global shared state. In contrast to
Blockchains which are heavily replicated and require lots of standardization or a
common code base, Supply Tree is distributed and loosely-coupled and hence
provides much better scaling behavior - both from a technological and from an
organizational perspective.

Introduction

Supply chains are complex networks containing a multitude of participants
around the world. Participants range from small and medium sized companies
to multi-national cooperations. Today, most participants in the supply chain
interact only with their immediate suppliers and customers, and data exchange

1

 Appendix 1

https://www.bosch.com/research/know-how/success-stories/economy-of-things-a-technology-and-business-evolution/
https://www.bosch.com/research/know-how/success-stories/economy-of-things-a-technology-and-business-evolution/

may happen over various channels from paper documents, e-mails and telephone
calls to proprietary and standardized electronic interchange (EDI) solutions.

Due to the heterogenous nature of these networks it becomes very cumbersome,
time consuming and costly to track down the origin of a malfunction that appears
in a finished product.

Architectures for Supply Chain Traceability

In [1] a system for supply chain traceability is introduced as follows: “From an
abstract viewpoint, a traceability information system can be thought of a single
massive, centralized data storage capturing all the information about each lot
along along each stage of the supply chain.”

However, the authors also point out that a centralized architecture has scaling
issues and can hardly meet the dynamic requirements of a heterogenous group
of supply chain participants. We may further add that a centralized architecture
represents a single point of failure and thus a honeypot for attackers. In addition
a central platform provided is a serious platform risk.

In recent years, decentralized architectures based on blockchain technology
have become suggested as a novel alternative to the centralized architecture.
Blockchains are peer-to-peer networks that are logically centralized but can
be decentralized from a technical and organizational point of view. They are
replicated state machines where state changes are represented by appending a
set of signed transactions, a block. Blocks are chained by cryptographic hashes.
Therefore, the history is auditable and tamper-evident. These properties of
logical centralization, i.e. to have a single source of truth, and the auditability
make the technology appealing for supply chain applications. However, in
contrast to traditional distributed systems, workload and storage is not shared
by the peers, but replicated. Hence, each participant carries the burden of all
other participants. This overhead is paid for the property of having a global
shared state which is not required in for supply chain traceability from our
perspective.

Furthermore, in most supply chains, participants are not willing to share data
with all participants and may only want to share because of specific contractual
pressure. Therefore, additional measures have to be taken to shield sensitive
data.

In this paper, we suggest a loosely-coupled decentralized system based on
federation, where data is kept at the source and only links with cryptographic
commitments are travelling downstream in the supply chain. Thereby data is
only shared if required and the company that owns the data stays in control
of the data. Still, the data becomes tamper-evident due to sharing of the
commitment, and the supply chain becomes traceable because of linking. In
contrast to centralized and blockchain architectures, the federated system is

2

much more scalable. This is obviously true from a technological point of view,
since it is distributed in the traditional sense, but also from an organizational
point of view, since the participants are only loosely coupled by a minimal set of
standardized web APIs.

Supply Tree - the federated systems approach to supply
chain traceability

Basic Concept

Supply tree is a combination of an append-only distributed data structure and
a set of standardized APIs to create a federated system for the exchange of
tamper-evident supply chain data. From the perspective of a finished product, a
supply chain has the structure of a tree. The finished product represents the
root node. The root node has directed edges to various child nodes representing
different parts from different suppliers. This structure may continue until we
end up with raw materials at the leaf nodes.

Figure 1: Supply Tree data structure

Each node is created by a company at the specific Tier X (Tier 2 in the picture)
in the supply chain and is communicated to the next company in Tier X-1,

3

i.e. its customer (Tier 1 in the picture). Thereby the tree gets built up from the
leafs to the root node over the production process. An edge is represented by a
cryptographic hash of the respective child. Hence, the data structure becomes
immutable, or more precisely, tamper-evident. A simple JSON representation of
a node may look as follows

{
"reference" : {

"0" : "https://supplytree.tierX+1.com/tree/<SHA512_OF_TREE_OBJECT>",
"1" : "https://supplytree.tierX+1.com/tree/<SHA512_OF_TREE_OBJECT>"

},
"data" : {

"0" : "https://supplytree.tierX.com/data/<SHA512_OF_DATA_OBJECT>",
"1" : "https://supplytree.tierX.com/data/<SHA512_OF_DATA_OBJECT>",
"2" : "https://supplytree.tierX.com/data/<SHA512_OF_DATA_OBJECT>"

},
"uuid": "https://supplytree.tierX.com/uuid/9973494216984ee5f78a1d432105af1e5a3eb5c7",

}

The reference section contains the links to the child nodes. In addition, there
is a data section. It contains a list of data objects that belong to the current
node. These data objects are also referenced by cryptographic hashes in order
to prevent modification of the data later on. Thus, a company down the supply
chain has a commitment to the data but does not necessarily need to retrieve
and store the data itself. Instead, the data can be retrieved if actually required,
e.g. in the case of a recall. Then, the data object hash can be compared with
the hash in the node object and any modification would become evident.

Although the node is uniquely identified by its cryptographic hash, there is the
need for another unique identifier (uuid). This identifier allows to link the node
to the physical item. At the point of production of the physical item an identifier
gets imprinted. This identifier can’t be the hash of the node object since the
data belonging to the node might not be complete and adding data would lead
to a new hash of the data object, and the node object subsequently.

Extensions

Non-repudiation with Digital Signatures

If we pick a specific point in the supply chain at Tier X. By sending the node
object (or only its hash), the company in Tier X+1 commits to the data and is
not able to change it without Tier X noticing. However, Tier X is able to modify
the node object from Tier X+1 and could include the modified object in a node
object that will be sent to Tier X-1. If these inconsistencies surface later on, it
is hard to point out the responsible party. Therefore, node objects should be
digitally signed and the receiving party should return a signed receipt.

4

Node Objects as capabilities for Access Control

In order to traverse a supply tree APIs of web servers hosted by several com-
panies have to be accessed. Since the URLs of node and data objects include
cryptographic hashes, the root node can be viewed as a capability to access to
the resources along the tree. Some companies might be relucant to rely solely on
this kind of access control that allows everyone in the possession of the respective
node object to access the data objects. In this case additional access control
mechanisms can be implemented at the concerning API. However, we strongly
suggest that the node resources stay unprotected, such that everyone down the
supply chain is able to traverse the tree and can retrieve signed node objects.
This entails that a company at a lower Tier gets information about the suppliers
of its suppliers. Sometimes this might not be desired. Then access could also be
restricted for the node resources and made only available to the direct customer
or as an additional feature, only for request signed by a defined legal authority,
e.g. Federal Motor Transport Authority (“KBA” in Germany).

Machine-readable Data Objects

Data objects in Supply Tree are binary blobs and the content is in principle
unrestricted. In some cases this might be pdf or even images. In order to inform
the client that accesses a specific data resource what to expect the content type
should be defined. However, the real power can be unlocked if data objects
are machine readable. Therefore, standardized JSON templates or JSON-LD
documents are recommended.

IoT-based real-time Data

In some cases the transport of goods should be monitored in real-time or sensor
data is collected over the course of the transport. These might be the location
of the goods, concussions or environmental conditions, such as temperature or
humidity. In this case a special type of data link can be added to the node object.
This link can not be identified by its hash, because the content is changing.
However, if the measurement values should be non-repudiable,then they should
be digitally signed.

Example from the Automotive Supply Chain

In this example we’ll go through an automotive example to show how the flow
of data would look like in a real world use case. We assume the following use
case: An OEM receives an infotainment system to build it into the car. The
infotainment system consists of several parts which are sourced from suppliers.
In this case the ECU (Electronic Control Unit). This use case can be also seen
as the digital vehicle file which documents the parts built into a specific car.
The example consists of two parts. The first part is the production process

5

where the physical items travel along the supply chain and get assembled. At
this stage detailed production information is typically not required upstream.
The second part is a recall scenario, where a malfunction in a part downstream
has been identified and the OEM has to identify which products are affects and
which supplier is responsible.

Supply Chain Participants

• Tier 2: Delivers the ECU
• Tier 1: Assembles the ECU into the infotainment system and delivers to
the OEM

• OEM: Assembles the infotainment system into the car.

Data flow

The production process

The data flow shows that Tier2 creates data objects, hashes them and includes
those links into the node object. The data typically comes from existing data
sources like a MES (Manufacturing Execution System) or ERP (Enterprise
Resource Planing) system.

In the next step the node object is hashed and made available through a link.
The link is sent to the next party in the supply chain, Tier1. This can be done
in three ways: * either the node object itself is sent, * or the link to the node
object is sent, * or the aforementioned UUID as a link is printed on the physical
product through which the data is retrieved from the previous supply chain step.

In the example above, the link to the node object is sent to the next step in the
chain.

In all cases, the messages should be signed and the receiver sends back a signed
receipt.

Tier1 also creates its own data object and adds both, the link to the data object
and the link to the Tier2 node object to a new node object. The new node object
is hashed and sent as a link to the OEM.

The OEM does the same with its own data objects. The chain is now linked
together and at any point in the future, any modifications to the objects can be
detected and thus, be used as evidence in cas of a dispute.

The recall

Now let’s look into a the recall situation. The OEM requests the node object
content from Tier1. Tier1 sends back the content to the OEM. The OEM
verifies, that the content matches the hash of the object to detect any possible

6

Figure 2: Automotive Supply Chain Example

7

modifications. Afterwards, the references to other node objects are parsed from
the node object and a reference to the node object from Tier2 is detected. The
OEM requests the Tier2 node object content, checks the hash and parses its
content. The result shows a data object that is fetched from Tier2.

Because of the hashes and links between the objects, any change to the data
since the time when the hashes were forwarded along the supply chain, can be
detected.

In this example we assume, that the ECU was manufactured with material that
later on has been identified beeing dangerous. Now, since the OEM can read
this information, the OEM can recall only the affected cars from the market
because of the given product instance data.

Relevant Objects

Node 58ca34

{
"reference" : {
},
"data" : {

"0" : "https://tier2.com/data/997349"
}

}

Node 29d47d

{
"reference" : {

"0" : "https://tier2.com/tree/58ca34",
},
"data" : {

"0" : "https://tier1.com/data/73d046"
}

}

Applications

Integration into existing System Landscape

The picture shows how the integration of SupplyTree into an existing landscape
would look like. On the left side, a simplified version of the automation
pyramid [2] (page 5) shows the relevant IT systems in a factory. At the top, the
EDI system shows how companies already communicate digitally in the order

8

Figure 3: System Integration

to cash process. In the middle, the arrows show the information flow from an
EDI system, through the different layers of the automation pyramid down to
the assembly line and back up to the EDI system.

The SupplyTree System doesn’t change this flow of information. It rather
integrates well into this landscape. Data can be extracted from different existing
systems, namely ERP and MES. The right side of the picture shows how
SupplyTree uses the extracted data to create a tamper-evident traceable chain
of that data, across multiple companies.

Implementation and Validation Status

We have implemented a first prototype allowing us to validate the concept. As a
next step, we plan to build a production-ready, open source implementation of
the concept and to test it in a real life supply chain use case.

Conclusion

SupplyTree explains a lightweight solution to solve trust issues along the supply
chain. It does this by focusing on a tamper-evident data chain along the supply
chain, that requires the participating parties to only agree on a minimalistic set
of API standarization. No central - or logical central - instance and therefrom
derived additional effort is required.

9

Circ4Life Traceability Module - Open
API Specification

(C) Copyright 2018-2019 European EPC Competence Center GmbH (EECC)
<circ4life@eecc.info>

Version 2.2.0, 2019-07-26

 Appendix 2

Table of Contents
Overview . 1

License information . 1

URI scheme . 1

Paths . 1

Bin Disposal Event Receiving Endpoint . 1

Bin Barcode Item Status Endpoint . 2

Simplified Impact Capturing Endpoint . 3

Object Event Capturing Endpoint . 4

EPC Item Status Endpoint . 5

Bin Barcode Total Impact Endpoint . 6

EPC Item Total Impact Endpoint. 6

SGTIN Total Impact Endpoint . 7

Internal EPCIS Subscription Endpoint . 8

Internal Inspection Event Endpoint. 9

SGTIN Item Status Endpoint . 10

Definitions . 11

ApiResponse. 11

BinDisposalData . 11

BusinessTransaction . 12

C4lObjectEPCEventData. 12

Impact . 13

ImpactData . 13

InspectionEventUiData . 14

Measure . 15

QuantityElement . 15

ResourceOrWaste. 15

ResourceOrWasteList . 16

SourceDestType. 16

Status . 17

Transportation. 17

Overview
This is the open API specification for the Endpoints of Webservices developed and provided by
the EECC within CIRC4Life. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 776503-CIRC4Life-
H2020-IND-CE-2016-2017/CIRC-2017/TwoStage.

License information
License : This document is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.
License URL : http://creativecommons.org/licenses/by-sa/4.0/
Terms of service : THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR
PARTICULAR PURPOSE, OR ANY WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION.
EECC disclaims all liability for any damages arising from use or misuse of this Standard, whether
special, indirect, consequential, or compensatory damages, and including liability for
infringement of any intellectual property rights, relating to use of information in or reliance upon
this document.

EECC retains the right to make changes to this document at any time, without notice. EECC
makes no warranty for the use of this document and assumes no responsibility for any errors
which may appear in the document, nor does it make a commitment to update the information
contained herein.

URI scheme
Host : circ4life.eecc.info
BasePath : /

Paths

Bin Disposal Event Receiving Endpoint

POST /api/capture/bin-disposal-event

Description

Data from the inteligent bins control unit is send to this endpoint whenever an item is put into
the bin.

Parameters

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Type Name Description Schema

Body
binDisposalDat
a
required

binDisposalData BinDisposalData

Responses

HTTP
Code Description Schema

200 Disposal event was successfully created and stored. ApiResponse

400
The request is invalid. Likely there is a problem with the
data/format. See message for details.

ApiResponse

500
Internal error: processing or storing the data failed. See message
for details.

ApiResponse

Consumes

• application/json

Produces

• application/json;charset=UTF-8

Tags

• recycling-capture-controller

Bin Barcode Item Status Endpoint

GET /status/binbarcode/{binbarcode}

Description

The latest known location and disposition of an item can be queried here via its bin barcode.

Parameters

Type Name Description Schema

Path
binbarcode
required

binbarcode string

2

Responses

HTTP
Code

Description Schema

200 Success Status

400 Bad request. (No ID or mal formatted ID given.) ApiResponse

404 Item not found. ApiResponse

Produces

• application/json;charset=UTF-8

Tags

• status-controller

Simplified Impact Capturing Endpoint

POST /api/capture/impact/{epc}

Description

A simplified interface to enable the partners to record data about ecological impacts that is
already accumulated and cannot be directly related to concrete events any more.

Parameters

Type Name Description Schema

Path
epc
required

epc string

Body
impactData
required

impactData ImpactData

Responses

HTTP
Code Description Schema

200 Impacts are recorded successfully. ApiResponse

3

HTTP
Code

Description Schema

400
The request is invalid. Likely there is a problem with the
data/format. See message for details.

ApiResponse

500
Internal error: processing or storing the data failed. See message
for details.

ApiResponse

Consumes

• application/json

Produces

• application/json;charset=UTF-8

Tags

• impact-only-capture-controller

Object Event Capturing Endpoint

POST /api/capture/objectEvent

Description

This endpoint is capable of capturing any CIRC4Life Object event, but all parameters have to be
specified explicitly.

Parameters

Type Name Description Schema

Body
c4lObjectEvent
Data
required

c4lObjectEventData
C4lObjectEPCEvent
Data

Responses

HTTP
Code Description Schema

200 Event successfully captures. No Content

4

HTTP
Code

Description Schema

400
Bad request, likely due to mal formatted input data. See message
for details..

ApiResponse

500
Internal error in transforming/loading the event. See message for
details.

ApiResponse

Consumes

• application/json

Produces

• application/json;charset=UTF-8

Tags

• event-capture-controller

EPC Item Status Endpoint

GET /status/epc/{epc}

Description

The latest known location and disposition of an item identified via its EPC.

Parameters

Type Name Description Schema

Path
epc
required

epc string

Responses

HTTP
Code Description Schema

200 Success Status

400 Bad request. (No ID or mal formatted ID given.) ApiResponse

404 Item not found. ApiResponse

5

Produces

• application/json;charset=UTF-8

Tags

• status-controller

Bin Barcode Total Impact Endpoint

GET /impacts/binbarcode/{binbarcode}

Description

Returns the aggregated impacts for the given item identified by its bin barcode.

Parameters

Type Name Description Schema

Path
binbarcode
required

binbarcode string

Responses

HTTP
Code Description Schema

200 All known impacts associated with the given item are returned. ImpactData

400 Bad request. (No ID or mal formatted ID given.) ApiResponse

404 Item not found. ApiResponse

Produces

• application/json;charset=UTF-8

Tags

• impact-aggregation-controller

EPC Item Total Impact Endpoint

GET /impacts/epc/{epc}

6

Description

Returns the aggregated impacts for the given item identified by its EPC.

Parameters

Type Name Description Schema

Path
epc
required

epc string

Responses

HTTP
Code Description Schema

200 All known impacts associated with the given item are returned. ImpactData

400 Bad request. (No ID or mal formatted ID given.) ApiResponse

404 Item not found. ApiResponse

Produces

• application/json;charset=UTF-8

Tags

• impact-aggregation-controller

SGTIN Total Impact Endpoint

GET /impacts/sgtin/{gtin}/{serial}

Description

Returns the aggregated impacts for the given item identified by its SGTIN.

Parameters

Type Name Description Schema

Path
gtin
required

gtin string

7

Type Name Description Schema

Path
serial
required

serial string

Responses

HTTP
Code Description Schema

200 All known impacts associated with the given item are returned. ImpactData

400 Bad request. (No ID or mal formatted ID given.) ApiResponse

404 Item not found. ApiResponse

Produces

• application/json;charset=UTF-8

Tags

• impact-aggregation-controller

Internal EPCIS Subscription Endpoint

POST /internal/subscription

Description

Receives EPCIS standard (i.e. XML) event lists from subscriptions.

Parameters

Type Name Description Schema

Body
newEvents
required

newEvents string

Responses

HTTP
Code Description Schema

200 All events successfully processed string

8

HTTP
Code

Description Schema

500 Error processing some events. Please re-send next time. string

Consumes

• application/xml

• text/xml

Produces

• application/xml

• text/xml

Tags

• subscription-accepting-controller

Internal Inspection Event Endpoint

POST /api/capture/inspection-event

Description

Used to receive data from the recycling inspection web user interface.

Parameters

Type Name Description Schema

Body
inspectionEven
tUiData
required

inspectionEventUiData
InspectionEventUiD
ata

Responses

HTTP
Code Description Schema

200 Inspection event was successfully created ApiResponse

400
The request is invalid. Likely there is a problem with the
data/format. See message for details.

ApiResponse

9

HTTP
Code

Description Schema

500
Internal error: processing or storing the data failed. See message
for details.

ApiResponse

Consumes

• application/json

Produces

• application/json;charset=UTF-8

Tags

• recycling-capture-controller

SGTIN Item Status Endpoint

GET /status/sgtin/{gtin}/{serial}

Description

The latest known location and disposition of an item can be queried here via its SGTIN.

Parameters

Type Name Description Schema

Path
gtin
required

gtin string

Path
serial
required

serial string

Responses

HTTP
Code Description Schema

200 Success Status

400 Bad request. (No ID or mal formatted ID given.) ApiResponse

404 Item not found. ApiResponse

10

Produces

• application/json;charset=UTF-8

Tags

• status-controller

Definitions

ApiResponse
Generic response including a message for debugging errors.

Name Description Schema

message
optional

Specific error message. Required if the status is not 2xx.
Example : "Write-only-memory subsystem too slow for this
machine."

string

path
required

The requested path.
Example : "/"

string

reason
optional

Standard human readable reason for the HTTP status
code.
Example : "Ok"

string

status
optional

Same code as returned in the HTTP header. Repeated here
for logging/debugging purposes.
Example : 200

integer (int32)

timestamp
optional

string (date-time)

BinDisposalData
This format is used to send data about disposal of an item from the intelligent bin to the
Traceability Module.

Name Description Schema

binBarcode
required

The same number as encoded into the printed bar code
label. Contains the RecycleBinUserID as the first 11 digits.
Example : "16004000001181122000011"

string

11

Name Description Schema

eventTime
optional

Time when the event happens
Example : "2019-05-16T13:40:00+02:00"

string (date-time)

fillingLevel
optional

Filling level of the bin at the time of disposal in %
Example : 42.23

number (double)

BusinessTransaction
According to the EPCIS standard.

Name Description Schema

bizTransaction
required

Standard BusinessTransactionID
Example : "http://transaction.acme.com/shipment/34ABC8"

string

type
optional

Standard BusinessTransactionTypeID string

C4lObjectEPCEventData
This is a JSON representation of an EPCIS object event as used in CIRC4Life. The Eco Impact
Extension is explicitly included.

Name Description Schema

action
required

See EPCIS standard for details.
Example : "ADD"

enum (ADD,
OBSERVE, DELETE)

bizLocation
optional

Standard epcis:BusinessLocationType string

bizStep
optional

Standard epcis:BusinessStepIDType string

bizTransaction
List
optional

Standard epcis:BusinessTransactionListType
<
BusinessTransaction
> array

destinationList
optional

Standard epcis:DestinationListType
< SourceDestType >
array

disposition
optional

Standard epcis:DispositionIDType string

12

Name Description Schema

epcList
optional

Standard epcglobal:EPC list (epcs are to be represented in
URI format)
Example : [
"urn:epc:id:sgtin:4047111.012345.012345678901"]

< string > array

eventTime
required

When the event happened. (Contains offset) string (date-time)

ilmd
optional

epcis:ILMDType < object > array

impactData
optional

Data about the ecological or other impacts associated
with the event

ImpactData

quantityList
optional

Standard epcis:QuantityListType
< QuantityElement
> array

readPoint
optional

Standard epcis:ReadPointType string

sourceList
optional

Standard epcis:SourceListType
< SourceDestType >
array

Impact
A concrete ecological (or other) impact. This is the JSON representation of
<c4l:impactElementType>.

Name Description Schema

impactType
required

This is a URI as specified in <c4l:impactType>.
Example : "http://dbpedia.org/resource/Premises"

string

measure
optional

Quantifying the amount Measure

ImpactData
Data about product specific ecological impacts. Contains any elements from the c4l epcis
extension.

13

Name Description Schema

impactList
optional

JSON representation of <c4l:impactList>. It can be used to
track social or ecological impacts that are not associated
with material flows such as e.g. land usage.

< Impact > array

resourceList
optional

This list represents the inflow of material into the
process. It is the JSON representation of
<c4l:resourceList>.

ResourceOrWasteLis
t

transportation
List
optional

This is the JSON representation of <c4l:transportList>.If
the environmental impact of transportation can not be
broken down into resource consumption (fuel,…) and type
(exhaust fumes,…) then a transportList can be used
instead.

< Transportation >
array

wasteList
optional

This represents the outflow (typically not including the
actual products) of a process. JSON representation of
<c4l:wasteList>.

ResourceOrWasteLis
t

InspectionEventUiData
Data Received from the UI in order to create an inspection event

Name Description Schema

age
optional

Estimated lifetime in ISO duration format. Need to be set
if state is REUSABLE, BROKEN or WORKING
Example : "P10Y"

string

binBarcode
required

Barcode from the bin label. Must be at least 22 digits long
Example : "16004000001181122000011"

string

brand
optional

Brand of the item. Need only to be filled out if GTIN is
missing and product is a EEE item
Example : "Apple"

string

gtin
optional

GTIN of the item. Required if product is a EEE item. If
GTIN is not available, please provide manufacturer &
model
Example : "4047111000006"

string

model
optional

Model of the item. Need only to be filled out if GTIN is
missing and product is a EEE item
Example : "iPhone 7"

string

14

Name Description Schema

serialNumber
optional

Serialnumber of the item. Required if product is a EEE
item
Example : "X01X23Y4XYXY"

string

state
required

Condition of the electronic device
Example : "WORKING"

enum (WORKING,
REUSABLE, BROKEN,
NO_EEE_ITEM)

timestamp
required

Timestamp of the inspection
Example : "2019-05-16T13:40:00+02:00"

string (date-time)

unuKey
optional

UNUkey of the electronic device. Need to be set if state is
REUSABLE, BROKEN or WORKING
Example : "303"

enum (303, 306,
401, 402, 406, 701,
702)

Measure
Data about product specific ecological impacts

Name Description Schema

quantity
required

Amount, measured in UOM.
Example : 1294.5

number

uom
optional

Unit of Measure. JSON representation of <c4l:measure>.
May be omitted if there is a natural uom.
Example : "MTK"

string

QuantityElement
JSON form of the EPCIS standard epcis:QuantityElementType

Name Description Schema

epcClass
required

URI of the epc class, see standard. string

measure
optional

Contains uom and quantity as in the epcis standard,
although not named measure there.

Measure

ResourceOrWaste
Information about a specific type of waste produced or a resource consumed. Implements

15

c4l:wasteElementType and c4l:wasteElementType.

Name Description Schema

amount
required

c4l:measure amount of waste produced/resource
consumed

Measure

sourceOrSink
optional

c4l:sinkType or c4l:sourceType: Semantic web URI for how
the waste was deposed/from where the resource is taken.
Example : "http://semanco02.hs-
albsig.de/repository/ontology-
releases/eu/semanco/ontology/SEMANCO/SEMANCO.owl#Not-
Renewable_Energy_Source"

string

type
required

c4l:wasteType or c4l:resourceType: URI for the type of
produced waste/consumed resource. Preferably using a
semantic web URI.
Example : "https://w3id.org/saref#Electricity"

string

ResourceOrWasteList
This type represents a material flow and can be used to implement c4l:resourceList and
c4l:wasteList. Notice that, as opposed to the XML Version, this JSON/Java version has 3 Lists of
elements of one type instead of one list containing 3 different types.

Name Description Schema

epcList
optional

Standard epcglobal:EPC list (epcs are to be represented in
URI format)
Example : [
"urn:epc:id:sgtin:4047111.012345.012345678901"]

< string > array

quantityList
optional

Standard epcis:QuantityElementType list.
< QuantityElement
> array

resourceOrWas
teList
optional

CIRC4Life specific type element format
< ResourceOrWaste
> array

SourceDestType
According to the EPCIS standard.

Name Description Schema

sourceDest
required

Standard SourceDestID. An identifier that denotes a
specific source or destination.

string

16

Name Description Schema

type
optional

Standard SourceDestTypeID. An identifier that indicates
what kind of source or destination this Source or
Destination (respectively) denotes.

string

Status
The latest known status of an item

Name Description Schema

disposition
required

Last known disposition (status) of the item
Example : "urn:epcglobal:cbv:disp:returned"

string

epc
required

The items identifier in EPC (URN) Format
Example :
"https://circ4life.eecc.info/recycling/bin/obj/160040000
0118112200001100001"

string

location
required

Last known location of the item
Example : "urn:epc:epc:sgln:4057847.0000018.0"

string

Transportation
JSON Format for c4l:transportElementType.

Name Description Schema

distance
optional

Distance travelled. Measure

vehicle
required

c4l:vehicleType URI naming the vehicle type used for
transportation
Example : "http://purl.org/vso/ns#Truck"

string

17

References

[1] Bechini, Alessio, et al. “Patterns and technologies for enabling supply
chain traceability through collaborative e-business.” Information and Software
Technology 50.4 (2008): 342-359.

[2] Hollender, Martin. Collaborative process automation systems. ISA, 2010.

[3] https://www.bosch.com/research/know-how/success-stories/economy-of-
things-a-technology-and-business-evolution/

10

